FIITJEE Big Bang Edge Test - 2023

for students presently in Class XI (going to XII) (Paper 2) SAMPLE PAPER

Time: 3 Hours (1:45 pm - 4:45 pm)

CODE: 1112-2

Maximum Marks: 243

Instructions:

Caution: Class, Paper, Code as given above MUST be correctly marked on the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

- 1. You are advised to devote 45 Minutes on Section-I and 135 Minutes on Section-II.
- 2. This Question paper consists of 2 sections. Marking scheme is given in table below:

Section	Subject		Question no.	Marking Scheme for each question			
Section	Subject		Question no.	Correct answer	Wrong answer		
	PHYSICS	(PART-A)	1 to 7	+3	-1		
SECTION - I	CHEMISTRY	(PART-B)	8 to 14	+3	-1		
	MATHEMATICS	(PART-C)	15 to 21	+3	-1		
	PHYSICS	(PART-A)	22 to 35	+3	-1		
	CHEMISTRY	(PART-B)	36 to 49	+3	-1		
SECTION - II	MATHEMATICS	(PART-C)	50 to 63	+3	-1		
OLOTION - II	PHYSICS	(PART-D)	64 to 69	+3	0		
	CHEMISTRY	(PART-E)	70 to 75	+3	0		
	MATHEMATICS	(PART-F)	76 to 81	+3	0		

- Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- 4. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
- 5. Before attempting paper write your OMR Answer Sheet No., Registration Number, Name and Test Centre in the space provided at the bottom of this sheet.
- 6. See method of marking of bubbles at the back of cover page for question no. 64 to 81.

Note: Please check this Question Paper contains all 81 questions in serial order. If not so, exchange for the correct Question Paper.

OMR Answer Sheet No	·:
Registration Number	:
Name of the Candidate	· =
Test Centre	:

Recommended Time: 45 Minutes for Section - I

Section - I

PHYSICS - (PART - A)

This part contains **7** Multiple Choice Questions number **1** to **7**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

- 1. A swimmer wishes to reach directly opposite point on the other bank of a river, flowing with velocity 8 m/s. The swimmer can swim 10 m/s in still water. The width of the river is 480 m. Time taken by him to do so
 - (A) 60 sec
 - (C) 80 sec

- (B) 48 sec
- (D) 100 sec
- 2. A mass m rests on a horizontal surface in equilibrium. The coefficient of friction between the mass and the surface is μ . A force F is acting on the body as shown in the figure. The force of friction on mass m is

- (A) μmg
- (C) $\mu \text{ [mg } \frac{\sqrt{3}}{2}\text{ F)}$

- (B) $F \frac{\sqrt{3}}{2}$
- (D) $\mu \text{ [mg + } \frac{\sqrt{3}}{2}\text{ F)}$
- 3. A particle slides down a smooth inclined plane of elevation α fixed in the elevator going up with an acceleration a_0 as shown in figure. The base of the incline has a length L. The time taken by the particle to reach the bottom is

(A)
$$\left[\frac{2L}{(g+a_0)\sin\alpha\cos\alpha} \right]^{1/2}$$

(C)
$$\left[\frac{g\sin\alpha\cos\alpha}{2L}\right]^{1/2}$$

$$\text{(B)} \left[\frac{2L}{g \sin \alpha \cos \alpha} \right]^{1/2}$$

(D)
$$\left[\frac{2L}{a_0 \sin \alpha \cos \alpha}\right]^{1/2}$$

4. If W_1, W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m. Find the correct relation between W_1, W_2 and W_3 :

(A) $W_1 > W_2 > W_3$

(B) $W_1 = W_2 = W_3$

(C) $W_1 < W_2 < W_3$

- (D) $W_2 > W_1 > W_3$
- 5. A block is at rest on a rough inclined surface inclined at an angle θ with the horizontal. The coefficient of static friction between the block and the inclined surface is μ . Then we can conclude that
 - (A) frictional force = $mgsin\theta$

(B) $\mu = \tan\theta$

(C) $\mu \leq \tan \theta$

- (D) None of these
- 6. If vectors \vec{A} and \vec{B} are perpendicular to each other, then which of the following statements is valid?
 - (A) $\vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}$

(B) $\vec{A} \times \vec{B} = 0$

(C) $\vec{A} \cdot \vec{B} = 0$

- (D) $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}|$
- 7. A ball is projected at such an angle that the horizontal range is three times the maximum height the angle of projection of the ball is,
 - (A) $\sin^{-1}(3/4)$

(B) $\sin^{-1}(4/3)$

 $(C) \cos^{-1}(4/3)$

(D) $tan^{-1}(4/3)$

CHEMISTRY - (PART - B)

This part contains **7 Multiple Choice Questions** number **8 to 14.** Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

8.

From 490 mg of H₂SO₄,10²⁰ molecules are removed. The number of molecules left over are:

	Space for Rough Work				
14.	Electromagnetic radiations of wavelength 242 nd Calculate the ionisation energy of sodium in kJ r (A) 460.5 J mol ⁻¹ (C) 450.5 cal mol ⁻¹				
	(C) $\pi_{2p_x}^*$	(D) π_{2p_x}			
	(A) σ_{ns}^{\star}	(B) $\sigma_{np_{z}}^{*}$			
13.	Which of the following has two nodal planes?				
12.	Which is the correct order w.r.t. ionisation energ (A) Be <c<n<o<b (c)="" b<be<c<o<n<="" td=""><td>ies of Be, B, C, N and O? (B) B<n<c<o<be (d)="" o<n<c<b<be<="" td=""></n<c<o<be></td></c<n<o	ies of Be, B, C, N and O? (B) B <n<c<o<be (d)="" o<n<c<b<be<="" td=""></n<c<o<be>			
11.	Lattice energy of $CaCl_2$ is U and that of NaCl is radii of Ca^{2+} and Na^+ : (A) $U = U'$ (C) $U < U'$	U'. For same crystal structure and same ionic (B) U > U' (D) cannot be decided			
10.	If an electron, a proton and an α -particle have sare related to one another as: (A) electron > proton > α -particle (C) α -particle > proton > electron	same de Broglie wavelenths, their kinetic energies (B) proton > electron > α -particle (D) electron = proton = α -particle			
9.	salts to CaCO ₃ and MgCO ₃ . The sample then w	d MgC ₂ O ₄ is heated at 500°C, converting the two veighed 0.465g. If the sample had been heated to what would the mixtures of oxides have weighted? (B) 0.21g (D) 0.3g			
	(A) 6.02×10^{21} (C) 3.01×10^{21}	(B) 4.9×10 ²¹ (D) 2.91×10 ²¹			

MATHEMATICS - (PART - C)

This part contains **7 Multiple Choice Questions** number **15 to 21**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

15.	If $(\log_e 2)(\log_b 625) = (\log_{10} 16)(\log_e 10)$ then the (A) 2 (C) 5	value of b is (B) 4 (D) none of these
16.	If R = {(x, y) x, y \in Z, $x^2 + y^2 \le 4$ } is a relation in (A) {0, 1, 2} (C) {-2, -1, 0, 1, 2}	a Z, then domain of R is (Z is set of all integer) (B) {0, -1, -2} (D) None of these
17.	$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{x - 4}$ is equal to (A) 1/6 (C) 0	(B) -1/6 (D) 1
18.	Two finite sets have m and n elements. The nun 112 more than that of subsets of set having n el (A) 4, 7 (C) 4, 4	
19.	If x^3 +ax+1=0 and x^4 + ax ² + 1 = 0 have a common (A) ($-\infty$, -2) (C) (-2, ∞)	on root, then complete set of values of a is (B) {-2} (D) none of these
20.	The number of values of m for which the point of $y=mx+1$ will have integral coordinates is (A) 0 (C) 2	f intersection of the lines $3x + 4y = 11$ and (B) 1 (D) 3
21.	If A = {1, 3, 5, 7, 9, 11, 13, 15, 17}, B = {2, 4,} universal set, then $(A' \cup (A \cup B) \cap B')$ (A) ϕ (C) A	, 18} and N the set of natural numbers is the (B) N (D) B

Recommended Time: 135 Minutes for Section - II

Section - II

PHYSICS - (PART - A)

This part contains **14 Multiple Choice Questions** number **22 to 35**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

22. For the system shown in the figure, the pulleys are light and frictionless. Assume wedge to be fixed and smooth. The tension in the string will be

(A) $\frac{2}{3}$ mgsin θ

(D) mgsin θ

- 23. A particle has an initial velocity of $3\hat{i} + 4\hat{j}$ and an acceleration of $0.4\hat{i} + 0.3\hat{j}$. Its speed after 10 s is
 - (A) 10 units

(B) 7 units

(C) $7\sqrt{2}$ units

(D) 8.5 units

24. A block of mass $\sqrt{3}$ kg is resting on a horizontal plane (coefficient of static friction $\mu = 1/2\sqrt{3}$). A force \vec{F} is applied to the block as shown in the figure. The minimum magnitude of \vec{F} for which the block begins to slide is (g = 10 m/s²)

m

(A) 20 N

(B) 5 N

(C) (20/3) N

(D) 10 N

- 25. An airplane is flying horizontally at a height of 490 m with a velocity of 150 m/s. A bag containing food is to be dropped to the Jawans on the ground. How far from them should the bag be dropped so that it directly reaches them?
 - (A) 1000 m

(B) 1500 m

(C) 750 m

(D) 2000 m

26. A car accelerates from rest to a speed of 10 m/s. Let the energy spent be E. If we accelerate the car from 10 m/s to 20 m/s, then the energy spent will be

(A) E

(B) 2E

(C) 3E

(D) 4E

SAMPLE PAPER-BBE-2023-C-XI-(Paper-2)-PCM-8

- 27. Assuming all surfaces to be smooth. Minimum value of 'a' so that sphere looses contact at P is
 - (A) g sin α
 - (B) g tan α
 - (C) g cot α
 - (D) g cosec α

28. The work done on a particle of mass m by a force $K\left[\frac{x}{(x^2+y^2)^{3/2}}\hat{i} + \frac{y}{(x^2+y^2)^{3/2}}\hat{j}\right]$ (K being a

constant of appropriate dimensions, when the particle is taken from the point (a, 0) to the point (0, a) along a circular path of radius a about the origin in the x-y plane is

(A) $\frac{2K\pi}{a}$

(B) $\frac{K\pi}{a}$

(C) $\frac{K\pi}{2a}$

- (D) 0
- 29. A projectile is given an initial velocity of $(\hat{i} + 2\hat{j})$ m/s, where \hat{i} is along the ground and \hat{j} is along the vertical. If g = 10 m/s², the equation of its trajectory is:
 - (A) $y = 2x 5x^2$

(B) $4y = 2x - 5x^2$

(C) $4y = 2x - 25x^2$

- (D) $y = x 5x^2$
- 30. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to
 - (A) $t^{1/2}$

(B) t^{3/4}

(C) $t^{3/2}$

- (D) t^2
- 31. In the figure, the blocks A, B and C of mass m each have accelerations a_1 , a_2 and a_3 respectively. F_1 and F_2 are external forces of magnitudes 2mg and mg respectively.

(C) $a_1 > a_3 > a_2$

(D) $a_1 > a_2$, $a_2 = a_3$

- 32. A car accelerates from rest at a constant rate of 2 m/s² for some time. Then, its retards at a constant rate of 4 m/s² and comes to rest. What is the maximum speed attained by the car if it remains in motion for 3 seconds?
 - (A) 2 m/s

(B) 3 m/s

(C) 4 m/s

- (D) 6 m/s
- 33. A stone is projected at time t=0 with a speed v_0 at an angle θ with the horizontal in a uniform gravitational field. The rate of work done (P) by the gravitational force plotted against time (t) will be as

(B)

(D)

34. A projectile is projected at an angle α (>45°) with an initial velocity u. The time t, at which its horizontal velocity will equal the vertical velocity, is

(A)
$$t = \frac{u}{g} (\cos \alpha - \sin \alpha)$$

(B)
$$t = \frac{u}{g} (\cos \alpha + \sin \alpha)$$

(C)
$$t = \frac{u}{q} (\sin \alpha - \cos \alpha)$$

(D)
$$t = \frac{u}{q} (\sin^2 \alpha - \cos^2 \alpha)$$

- 35. Figure shows regular hexagon PQRSTU. Find the value of $\overrightarrow{PQ} + \overrightarrow{PR} + \overrightarrow{PS} + \overrightarrow{PT} + \overrightarrow{PU}$.
 - (A) PO

(B) 2PO

(C) 4PO

(D) 6PO

CHEMISTRY - (PART - B)

This part contains 14 Multiple Choice Questions number 36 to 49. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

36.	Mixture of one mole each of ethyne and propyr	ne on reaction with Na will form H ₂ gas at S.T.P.				
	vol. of H ₂ gas produced will be?	_				
	(A) 22.4 L	(B) 11.2 L				
	(C) 33.6 L	(D) 44.8 L				
37.	1.0g of a sample of brass, on reacting with exce The percentage of Zn in the sample of brass is:	ss of HCl produces 120 mL of H ₂ gas at STP.				
	(A) 32% (C) 38%	(B) 35% (D) 40%				
38.	A 124 W bulb converts only 15% of the energy nm. How many photons are emitted by the light (A) 4×10^{19} (C) 8×10^{18}	supplied to it into visible light of wavelength 640 bulb in one second? (B) 6×10^{19} (D) 3×10^{19}				
39.	An object absorbs energy corresponding to	wavelength 2400 Å and emits two different				
	radiations. The wavelength of one radiation is radiation?	s $6000\mathring{\text{A}}$. What is the wavelength of the other				
	(A) 2000 Å	(B) 3600 Å				
	(C) 4000 Å	(D) 5000 Å				
40.		lectron returns to the ground state after excitation ould be: (use energy of ground state of H-atom =				
	(A) 1	(B) 2				
	(C) 3	(D) 4				
41.	The ions O ²⁻ , F ⁻ ,Na ⁺ ,Mg ²⁺ ,Al ³⁺ are isoelectron	ic. Their ionic radii show:				
	(A) A significant decrease from O ²⁻ to Al ³⁺					
	(B) an increase from O2- to F- and then decrea	ase from Na ⁺ to Al ³⁺				
(C) a decrease from O ²⁻ to F ⁻ and then increase from Na ⁺ to Al ³⁺						
	(D) a significant increase from O ²⁻ to Al ³⁺					
	Space for Roug	gh Work				

42.	The energy required to ionise 0.7mg of Li will be (A) 52.0 J (C) 52 kJ	e (IE of Li = 520 kJ mol ⁻¹ and At. Wt. = 7): (B) 520 J (D) 5.2 J
43.	Which of the following is expected to have higher (A) Li^+ (C) H^+	est hydration energy? (B) Be ²⁺ (D) All have same value
44.	Which of the following order is correct w.r.t. the (A) $O^{2^-} > F^- > Na^+ > Mg^{2^+}$ (C) $F^- > O^{2^-} > Mg^{2^+} > Na^+$	radius? (B) $Mg^{2+} > Na^+ > F^- > O^{2-}$ (D) $Na^+ > Mg^{2+} > O^{2-} > F^-$
45.	On the basis of MOT which is correct? (A) The bond order for C_2 molecule is two and by (B) The bond order for C_2 molecule is two with σ (C) The HOMO in this molecule are σ type of an electrons (D) None of the above is correct	one σ bond and one π -bond
46.	In which one of the following molecules the cent (A) BeF_2 (C) C_2H_2	ral atom said to adopt sp ² hybridization? (B) BF ₃ (D) NH ₃
47.	Ratio of wavelength of series limit of Paschen aris: (A) $\frac{4}{9}$ (C) $\frac{9}{16}$	and Brackett series for a single electronic species (B) $\frac{12}{7}$ (D) $\frac{16}{25}$
48.	Which of the following concentration terms is ter (A) % by mass (C) Mass/volume ratio	mperature dependent? (B) Mole fraction (D) Molality
49.	What is the molality of a solution made by dissolution 64.0 g of H_2O ? (A) 0.0533 (C) 0.360	lying 36.0 g of glucose ($C_6H_{12}O_6$, M = 180.0) in (B) 0.200 (D) 3.12

MATHEMATICS - (PART - C)

This part contains **14 Multiple Choice Questions** number **50 to 63**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

- 50. Value of the expression 2sinx cos2x is always
 - (A) greater than or equal to -3/2
- (B) less than or equal to 3/2
- (C) greater than or equal to -1/2
- (D) none of these
- 51. The solution of the equation $\cos^2\theta + \sin\theta + 1 = 0$ lies in the interval

(A)
$$\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

(B)
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

(C)
$$\left(\frac{3\pi}{4}, \frac{5\pi}{7}\right)$$

(D)
$$\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$$

52. If $\cos 25^{\circ} + \sin 25^{\circ} = k$, then $\cos 20^{\circ}$ is equal to

(A)
$$\frac{k}{\sqrt{2}}$$

(B)
$$-\frac{k}{\sqrt{2}}$$

(C)
$$\pm \frac{k}{\sqrt{2}}$$

(D) None of these

- 53. If $3 \sin^2 A + 2\sin^2 B = 1$ and $3 \sin 2A 2 \sin 2B = 0$, where A and B are acute angles, then A + 2B is equal to
 - (A) $\pi/3$

(B) $\pi/4$

(C) $\pi/2$

- (D) none of these
- 54. If $tan\theta = n tan \phi$, then maximum value of $tan^2 (\theta \phi)$ is equal to

(A)
$$\frac{(n-1)^2}{4n}$$

(B)
$$\frac{(n+1)^2}{4n}$$

(C)
$$\frac{(n+1)^2}{2n}$$

(D)
$$\frac{(n-1)}{2n}$$

- 55. If the mid-points P, Q and R of the sides of the $\triangle ABC$ are (3, 3), (3, 4) and (2, 4) respectively, then $\triangle ABC$ is
 - (A) right angled

(B) acute angled

(C) obtuse angled

(D) none of these

56.	If x_1, x_2, x_3 are in A.P. and y_1, y_2, y_3 are also in are	A.P., then the points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$
	(A) collinear (C) form a Δ with Area 2 sq. units	(B) form a Δ with Area 1 sq. units (D) None of these
57.	If A and B are two sets defined as $A = \left\{ (x, y) \mid y = \frac{1}{x}; \ x \in R - \{0\} \right\}$	
	$B = \left\{ \begin{pmatrix} x, y \end{pmatrix} \mid x + y = 0, x \in R \right\}, \text{ then}$ (A) $A \cap B = \emptyset$ (C) $A \cap B = B$	(B) A ∩ B = A (D) A ∪ B = A
58.	Number of values of θ in [0, $2\pi]$ that satisfy $sin\theta$ (A) 0 (C) 2	$+\cos\theta = 1$ (B) 1 (D) More than 2
59.	If α and β are roots of $x^2 - 7x + 1 = 0$ and $T_n = 0$	$\alpha^{n} + \beta^{n}$. Find $\frac{T_{2021} + T_{2019}}{T_{2020}}$?
	(A) $\frac{1}{7}$ (C) 2021	(B) 1 (D) 7
60.	Find distance between lines $3x + 4y + 7 = 0$ and	
	(A) $\frac{3}{10}$ (C) $\frac{7}{10}$	(B) $\frac{13}{10}$ (D) $\frac{11}{10}$
61.	If $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 4$, Find $a^2 + b^2$?	
	(A) 25 (C) 26	(B) 27 (D) 17
62.	The number of elements in set $\{(a, b): 2a^2 + 3b^2 (A) 6 (C) 10$	= 35, a, b \in z}, where z is set of all integers is (B) 8 (D) 12
63.	Find value of $\lim_{n\to\infty} \frac{1^3 + 2^3 + 3^3 + + n^3}{n^4 + 2}$	(B) 2

PHYSICS - (PART - D)

This part contains 6 Numerical Based Questions number 64 to 69. Each question has Single Digit Answer 0 to 9.

- 64. During measurement of kinetic energy T, the percentage error in measurement of mass of particle and momentum of particle are 2% and 3%., respectively. The percentage error in measurement of kinetic energy is n%. Find the value of n.
- 65. A particle is projected from point A perpendicular to inclined plane with a velocity 50 m/s as shown in the figure. Particle strikes a vertical plane perpendicularly at point B. Find the time (in sec) taken by particle is going from point A to point B.

- 66. A stone is lying at rest in a river. The minimum mass of stone, $m = k\rho v^x g^{-3}$ is needed for remaining at rest. Here, k = constant having no unit, g = acceleration due to gravity v = river flow velocity, $\rho = density$ of water. Find the value of x.
- 67. In the figure shown, $a_3 = 6m/s^2$ (downwards) and $a_2 = 4m/s^2$ (upwards). Find acceleration of box 1 (in m/s²)

- 68. A ball of mass 0.5 kg is dropped from a tower the power of gravitational force at t = 2s, is 100α Watt. (take g = 10 m/s²). Find the value of α .
- Two blocks A and B each of mass m are placed on a smooth horizontal surface. Two horizontal force F and 2F are applied on both the blocks A and B, respectively, as shown in the figure. If the block A does not slide on block B, then the normal reaction acting between the two blocks is found to be $n \times F$. Then n is

CHEMISTRY - (PART - E)

This part contains 6 Numerical Based Questions number 70 to 75. Each question has Single Digit Answer 0 to 9.

- 70. Total number of H-bonding sites available in H₂O are.....
- 71. How many of the following radius orders are incorrect?
 - (i) $N^{3-} > P^{3-}$
 - (ii) $O^{2-} > F^{-}$
 - (iii) $Ca^{2+} > Sr^{2+}$
 - (iv) $S^- > S^{2-}$
 - (v) $S^{2-} > O^{-}$
- 72. Number of electrons with m = 0 value in phosphorous atom are
- 73. How many millilitres of 0.5 M KMnO₄ are needed to react with 3.04 gms of iron (II) sulphate, FeSO₄?

The reaction is as follows:

 $10\text{FeSO}_{4}(aq) + 2\text{KMnO}_{4}(aq) + 8\text{H}_{2}\text{SO}_{4}(aq)$

$$\longrightarrow$$
 5Fe₂(SO₄)₃(aq) + 2MnSO₄(aq) + K₂SO₄(aq) + 8H₂O(ℓ)

- 74. How many moles of KMnO₄ are required in acidic medium to oxidise 10 mole of Sn²⁺ to Sn⁴⁺?
- 75. The velocity of an electron in a certain Bohr orbit of H-atom bears the ratio 1 : 275 to the velocity of light. The shell number is :

MATHEMATICS - (PART - F)

This part contains 6 Numerical Based Questions number 76 to 81. Each question has Single Digit Answer 0 to 9.

76. Find the value of
$$\frac{\tan 70^{\circ} - \tan 20^{\circ}}{\tan 50^{\circ}}$$

- 77. Find the exact value of the expression $\frac{\sin^2 34^\circ \sin^2 11^\circ}{\sin 34^\circ \cos 34^\circ \sin 11^\circ \cos 11^\circ}$
- 78. If $\sum_{r=1}^{88} \tan r^0 \tan (r+1)^0 = \cot^2 1^0 k$, where k is a prime number, then find the absolute difference of the digits in k.
- 79. If value of limit $\lim_{x\to\infty} \left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)$ is k, find 4k.
- 80. If α , β , γ are roots of $x^3 2x^2 x + 3 = 0$, then value of $\frac{(\alpha^3 + \alpha^2 + 3)(\beta^3 + \beta^2 + 3)(\gamma^3 + \gamma^2 + 3)}{\alpha\beta\gamma}$ is
- 81. Find the value of $\frac{\log_5 9.\log_7 5.\log_3 7}{\log_2 \sqrt{6}} + \frac{1}{\log_9 \sqrt{6}}$

FIITJEE Big Bang Edge Test - 2023 for students presently in Class XI (going to XII) (Paper 2) SAMPLE PAPER ANSWER KEY

1.	С	2. I	В	3.	Α	4.	В
5.	Α	6.	С	7.	D	8.	D
9.	С	10.	A	11.	В	12.	С
13.	С	14. I	В	15.	C	16.	С
17.	В	18. I	В	19.	В	20.	C
21.	В	22.	С	23.	С	24.	Α
25.	В	26.	С	27.	В	28.	D
29.	Α	30.	С	31.	C	32.	С
33.	D	34.	C	35.	D	36.	С
37.	В	38. I	В	39.	C	40.	Α
41.	Α	42.	A	43.	С	44.	Α
45.	Α	46. I	В	47.	С	48.	С
49.	D	50.	A	51.	D	52.	Α
53.	С	54.	A	55.	Α	56.	Α
57.	Α	58. I	D	59.	D	60.	Α
61.	С	62. I	В	63.	D	64.	7
65.	4	66.	6	67.	1	68.	1
69.	3	70.	4	71.	3	72.	9
73.	8	74.	4	75.	2	76.	2
77.	1	78. <i>'</i>	1	79.	2	80.	5
81.	4						