FIIT] EE sAMPLE PAPER-2016

for students presently in Class 10
 Paper 2

Time: 3 Hours (1:45 pm - 4:45 pm)

Code 1010

Maximum Marks: 399

Instructions:

Caution: Class, Paper, Code as given above MUST be correctly marked in the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

1. This Question paper consists of 1 section. All questions will be multiple choice single correct out of four choices with marking scheme in table below:

Section - I (PCM)	Question no.	Marking Scheme for each question	
		correct answer	wrong answer
PHYSICS	1 to 9,11 to 12,18 to 20,31	$\mathbf{+ 3}$	$\mathbf{- 1}$
	10,13 to 17,21 to $23,26,32$ to 33	$\mathbf{+ 4}$	$\mathbf{- 1}$
	24 to 25,27 to 30,34 to 35	$\mathbf{+ 5}$	$\mathbf{- 2}$
CHEMISTRY	36 to 44,46 to 47,53 to 55,66	$\mathbf{+ 3}$	$\mathbf{- 1}$
	45,48 to 52,56 to $58,61,67$ to 68	$\mathbf{+ 4}$	$\mathbf{- 1}$
	59 to 60,62 to 65,69 to 70	$\mathbf{+ 5}$	$\mathbf{- 2}$
MATHEMATICS	71 to 79,81 to 82,88 to 90,101	$\mathbf{+ 3}$	$\mathbf{- 1}$
	80,83 to 87,91 to $93,96,102$ to 103	$\mathbf{+ 4}$	$\mathbf{- 1}$
	94 to 95,97 to 100,104 to 105	$\mathbf{+ 5}$	$\mathbf{- 2}$

2. Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
3. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
4. Before attempting paper write your OMR Answer Sheet No., Registration Number, Name and Test Centre in the space provided at the bottom of this sheet.

Note: Please check this Question Paper contains all 105 questions in serial order. If not so, exchange for the correct Question Paper.

OMR Answer Sheet No. \qquad
Registration Number \qquad
Name of the Candidate \qquad
Test Centre \qquad

Physics

(Part - A)

Straight Objective Type

Physics contains 35 multiple choice questions numbered 1 to 35. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. Magnetic field lines inside a long current-carrying solenoid are nearly
(A) elliptical
(B) parabolic
(C) circular
(D) straight
2. The CGS unit of magnetic field is
(A) Tesla
(B) Weber
(C) Ampere
(D) Gauss
3. Fuels are used in :
(A) automobiles
(B) to run engine
(C) homes
(D) all of them
4. Which of the following is not a solid fuel :
(A) coke
(B) coal
(C) charcoal
(D) kerosene
5. Advantage of using liquid fuel is :
(A) Cheaper than solid fuels
(B) Does not leave ash
(C) Has high ignition temperature in comparison to solid fuel
(D) None
6. The effective resistance of the parallel combination is
(A) Larger than the largest resistance
(B) Larger than the smallest resistance
(C) Smaller than the smallest resistance
(D) None of these.
7. The material which is/are used to make the protective handles of electric tools is/are.
(A) Semi conductor
(B) Conductor
(C) Both (A) \& (B)
(D) Insulator
8. Ampere-second stands for the unit of
(A) power
(B) energy
(C) emf
(D) charge
9. The net resistance of a voltmeter should be large to ensure that
(A) it does not get overheated
(B) it does draw excessive current
(C) it can measure large potential differences
(D) it does not appreciably change the potential difference to be measured.
10. What will be the direction of current when seen from the magnet side when both the Circuit and Magnet moves uniformely with the same speed along a straight line.
(A) Clockwise
(B) Anticlockwise
(C) No current will flow through the circuit
(D) None of these

11. Cadmium rods are used in a nuclear reactor for
(A) slowing down fast neutrons
(B) speeding up slow neutrons
(C) absorbing neutrons
(D) producing neutrons
12. Natural gas mainly consists of
(A) Ethane
(B) Methane
(C) Propane
(D) Butane
13. The material used in the space between the fuel rods in a nuclear reactor is called
(A) moderator
(B) coolant
(C) water
(D) reactor core
14. A magnetic field:
(A) always exerts a force on a charged particle
(B) exerts a force only if the charged particle is at rest
(C) exerts a force if the charged particle is moving across
(D) exerts a force if the charged particle is moving along the field
15. A man has five resistors each of value $1 / 5 \Omega$. What is the maximum resistance he can obtain by connecting them?
(A) 1Ω
(B) 5Ω
(C) $1 / 2 \Omega$
(D) $2 / 5 \Omega$
16. Figure shows a network of currents. The magnitude of currents is shown here. The current I will be
(A) -3 A
(B) 3 A
(C) 13 A
(D) 20 A

17. Which of the following fields are produced by a moving electric charge :
1) Electric field
2) Magnetic field
3) Gravitational field
(A) $1 \& 3$ are correct
(B) $1 \& 2$ are correct
(C) 2 \& 3 are correct
(D) All are correct
18. Electric motor
(A) converts electrical energy into kinetic energy
(B) measures electric current
(C) measures potential difference
(D) provides a constant potential difference.
19. In chulhas, gaps are left between the logs:
(A) To decrease the ignition temperature
(B) To allow the air to enter and facilitate fuel burning
(C) To cut off the supply of air
(D) All of these
20. Choose correct statement:
(A) solar energy is renewable source of energy
(B) solar energy causes pollution
(C) solar energy is available in plenty, all the time at all the places
(D) none
21. Three resistors $\mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=3 \Omega$ and $\mathrm{R}_{3}=6 \Omega$ are given. Which of the following combinations will give an effective resistance of 6Ω ?
(A) R_{3} and R_{1} in parallel in series with R_{2}
(B) R_{1} and R_{2} in parallel in series with R_{3}
(C) R_{2} and R_{3} in parallel in series with R_{1}
(D) None of these.
22. The value of I will be :
(A) 1 amp
(B) 2 amp
(C) 3 amp
(D) 4 amp

23. A circular coil A of radius r carries current I. Another circular coil B of radius $2 r$ carries current of I. The magnetic fields at the centres of the circular coils are in the ratio of
(A) $3: 1$
(B) $4: 1$
(C) $1: 1$
(D) $2: 1$
24. In the given figure if each resistance is of 10Ω then reading of the ammeter is

(A) 1 A
(B) 4 A
(C) 3 A
(D) 6 A
25. A straight thin conductor is bent as shown in figure. It carries a current I. Magnitude of magnetic field at the centre of semicircular arc is :-
(A) $\frac{2 \mu_{0} \mathrm{l}}{4 \pi \mathrm{R}}$
(B) $\frac{\mu_{0} \mathrm{l}}{4 \mathrm{R}}\left(1-\frac{2}{\pi}\right)$
(C) $\frac{\mu_{0} \mathrm{l}}{2 \mathrm{R}}\left(1+\frac{1}{\pi}\right)$
(D) zero
26. A current I_{1} carrying wire $A B$ is placed near another long wire $C D$ carrying current I_{2}. If $A B$ is free to move then it will move :
(A) Towards left
(B) Towards Right
(C) Upwards
(D) Downwards

27. Three voltmeters, all having different resistances, are joined as shown in the figure. When some P.d. is applied across P and Q, their readings are $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} respectively. Then
(A) $V_{1}=V_{2}$
(B) $\mathrm{V}_{1} \neq \mathrm{V}_{2}$
(C) $V_{1}+V_{2}<V_{3}$
(D) $V_{1}+V_{2}>V_{3}$

28. Find the current in the resistance 10Ω.
(A) 2 A
(B) 0.5 A
(C) 1 A
(D) 1.5 A

29. Two resistors R and $2 R$ are connected in series in an electric circuit. The thermal energy developed in R and $2 R$ are in the ratio
(A) $1: 2$
(B) $2: 1$
(C) $1: 4$
(D) $4: 1$
30. A coil of one turn is made of a wire of certain length and then from the same length a coil of two turns is made. If the same current is passed in both the cases, then the ratio of the magnetic field at their centres will be
(A) $2: 1$
(B) $1: 4$
(C) $4: 1$
(D) $1: 2$
31. Which part of solar radiations are harmful for skin:
(A) ultraviolet
(B) visible
(C) infrared
(D) none
32. The resistances in the following figure are in ohm. Then the effective resistance between the points A and B is:
(A) 2Ω
(B) 3Ω
(C) 6Ω
(D) 36Ω

33. In the given figure, force on $\operatorname{rod} A$ and $\operatorname{rod} B$ are in direction respectively:
(A) Rightward direction, leftward direction
(B) Rightward direction, Rightward direction
(C) Leftward direction, Leftward direction
(D) Leftward direction, Rightward direction

34. An electron has a circular path of radius 0.01 m in a perpendicular magnetic induction $10^{-3} \mathrm{~T}$. The speed of the electron is nearly
(A) $1.76 \times 10^{4} \mathrm{~m} / \mathrm{s}$
(B) $1.76 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(C) $3.52 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(D) $7.04 \times 10^{6} \mathrm{~m} / \mathrm{s}$
35. In the circuit shown, some potential difference is applied between A and B. Find the equivalent resistance between A and B.
(A) $R=\frac{18}{5} \Omega$

(B) $R=15 \Omega$
(C) $R=0 \Omega$
(D) $R=6 \Omega$

Chemistry

(Part - B)

Straight Objective Type

Chemistry contains 35 multiple choice questions numbered 36 to 70 . Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
36. A solution turns blue litmus red. The pH of the solution is probably
(A) 8
(B) 10
(C) 12
(D) 6
37. The type of medicine used to treat indigestion is
(A) Antihistamic
(B) sulpha drug
(C) Antacid
(D) Antibiotic
38. For dilution of a concentrated acid, we should add
(A) Water into the concentrated acid
(B) Concentrated acid into water
(C) Both the above are correct
(D) First water into acid and then more acid
39. Lemon juice and coffee are
(A) Both acidic
(B) Both basic
(C) Lemon juice is acidic, coffee is basic
(D) Lemon juice is basic, coffee is acidic
40. The soil for healthy growth of plants should be
(A) Highly acidic
(B) Highly alkaline
(C) Neither alkaline nor highly acidic
(D) Neither acidic nor highly alkaline
41. The valency of phosphate ion is
(A) -1
(B) -2
(C) +3
(D) -3
42. Which of the following reaction will not take place?
(A) $\mathrm{Zn}+\mathrm{FeSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Fe}$
(B) $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCI}+\mathrm{I}_{2}$
(C) $\mathrm{Zn}+\mathrm{MgSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Mg}$
(D) $\mathrm{Mg}+\mathrm{CuSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Cu}$
43. In the following equation
$\mathrm{Na}_{2} \mathrm{CO}_{3}+x \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the value of x is
(A) 1
(B) 2
(C) 3
(D) 4
44. Bauxite is the most important ore of
(A) Aluminium
(B) Iron
(C) Copper
(D) Lead
45. Elements of group 17 are known as
(A) Chalcogens
(B) Noble gases
(C) Halogens
(D) Transition elements
46. Which of the following are made up of bases?
(A) Antacid tablet
(B) Soap
(C) Toothpaste
(D) All of the above
47. The pH of solutions A, B, C, D are 9.5, 2.5, 3.5 and 5.5 respectively. The most acidic solution is
(A) A
(B) B
(C) C
(D) D
48. Which of the following will not give H^{+}ions in aqueous solution?
(A) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(B) $(\mathrm{COOH})_{2}$
(C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$
49. Which of the following is not a characteristic of a base?
(A) They have a bitter taste
(B) They turn red litmus blue
(C) They show a red colour with methyl orange
(D) Their aqueous solutions conduct electricity
50. Which three numbers a, b and c are required to balance the equation?
$\mathrm{aLi}(\mathrm{s})+\mathrm{bO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CLi}_{2} \mathrm{O}(\mathrm{s})$
(A) 421
(B) 212
(C) 412
(D) 111
51. Given the following three observations of the reactions of four metals
(i) Metal O will displace metal N from its chloride
(ii) Only metal L reacts with cold water
(iii) Metal N reacts faster with acid than metal M

What is their reactivity order, from the most reactive to least reactive?
(A) $\mathrm{O}>\mathrm{L}>\mathrm{N}>\mathrm{M}$
(B) $\mathrm{M}>\mathrm{O}>\mathrm{N}>\mathrm{L}$
(C) $\mathrm{L}>\mathrm{O}>\mathrm{N}>\mathrm{M}$
(D) $\mathrm{L}>\mathrm{N}>\mathrm{O}>\mathrm{M}$
52. Because of high electropositivity, the atoms of metals can easily form
(A) Positive ions
(B) Negative ions
(C) Neutral ions
(D) Covalent bonds
53. Among the following sulphide ore is
(A) Calamine
(B) Gypsum
(C) Galena
(D) Zincite
54. The unwanted material in an ore is known as
(A) Flux
(B) Gangue
(C) Slag
(D) Mineral
55. Acetic acid is a weak acid because
(A) Its aqueous solution is acidic
(B) It is highly ionized
(C) It is weakly ionized
(D) It contains - COOH group
56. When one of the following is correct?
(A) Both bases and alkalies are soluble in water
(B) Alkalies are soluble in water but all bases are not
(C) Bases are soluble in water but all alkalies are not
(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is a base because it has OH group
57. $\mathrm{A} 10^{-4} \mathrm{M} \mathrm{NaOH}$ solution will have a pH of
(A) 4
(B) 6
(C) 8
(D) 10
58. Which four numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are required to balance the equation?
$\mathrm{aAl}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{bHCl}(\mathrm{aq}) \longrightarrow \mathrm{cAlCl}_{3}(\mathrm{aq})+\mathrm{dH}_{2} \mathrm{O}(\ell)$
(A) 2323
(B) 1313
(C) 1626
(D) 2623
59. Which of the following is not a thermal decomposition reaction?
(A) $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
(B) $2 \mathrm{FeSO}_{4} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}+\mathrm{SO}_{3}$
(C) $\mathrm{ZnCO}_{3} \rightarrow \mathrm{ZnO}+\mathrm{CO}_{2}$
(D) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
60. Dolomite is
(A) An acid salt
(B) A mixed salt
(C) A normal salt
(D) A double salt
61. Partial neutralization of a polybasic acid gives
(A) Acid salt
(B) Basic salt
(C) Normal salt
(D) Double salt
62. Calculate the pH of $0.005 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
(A) 1
(B) 3
(C) 2
(D) 5
63. Calcination occurs
(A) In presence of air
(B) In absence of air
(C) Both
(D) None
64. In the reaction, $2 \mathrm{FeCl}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ chlorine may be regarded as
(A) An oxidizing agent
(B) A reducing agent
(C) A catalyst
(D) Providing an inert medium
65. Oxides of metals are generally
(A) Acidic
(B) Basic
(C) Amphoteric
(D) Neutralization
66. For the following reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$. Which acts as an 'reducing agent'?
(A) CO_{2}
(B) Fe
(C) CO
(D) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
67. Which of the following represents an 'oxidation only' change?
(A) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{g})$
(B) $\mathrm{Mg}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s})$
(C) $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}(\mathrm{aq})$
(D) Zn (s) $-2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}^{2+}(\mathrm{s})$
68. The highest ionization energy is exhibited by
(A) Halogens
(B) Alkaline earth metals
(C) Transition metals
(D) Noble gases
69. When a base is dissolved in water?
(A) Concentration of OH^{-}ions per unit volume increases
(B) Concentration of OH^{-}ions per unit volume decreases
(C) Concentrating of OH^{-}ions per unit volume may increase or decrease depending upon the nature of the base
(D) No change in concentration of OH^{-}ions per unit volume occurs
70. AgCl is called as
(A) German silver
(B) Cinnabar
(C) Horn silver
(D) None

(Part - C)

Straight Objective Type

Mathematics contains 35 multiple choice questions numbered 71 to 105. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
71. If $x+2$ is a factor of $x^{2}+a x+2 b$ and $a+b=4$, then
(A) $a=1, b=3$
(B) $a=3, b=1$
(C) $a=-1, b=5$
(D) $a=5, b=-1$
72. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , the distance between their tops is
(A) 12 m
(B) 14 m
(C) 13 m
(D) 11 m
73. In a right triangle $A B C$ right-angled at B, if P and Q are points on the sides $A B$ and $B C$ respectively, then
(A) $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
(B) $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
(C) $\mathrm{AQ}^{2}+\mathrm{CP}^{2}=A \mathrm{C}^{2}+\mathrm{PQ}^{2}$
(D) $A Q+C P=\frac{1}{2}(A C+P Q)$.
74. In the figure, $R S\|D B\| P Q$. If $C P=P D=11 \mathrm{~cm}$ and $D R=R A=3 \mathrm{~cm}$. Then the values of x, y and z can be

(A) 12, 10, 12
(B) 14, 6, 6
(C) $10,7,10$
(D) $16,8,8$
75. If $3 \cos \theta=5 \sin \theta$, then the value of $\frac{5 \sin \theta-2 \sec ^{3} \theta+2 \cos \theta}{5 \sin \theta+2 \sec ^{3} \theta-2 \cos \theta}$ is
(A) $\frac{271}{979}$
(B) $\frac{316}{2937}$
(C) $\frac{542}{2937}$
(D) None of these
76. $\frac{\cot \theta}{\cot \theta-\cot 3 \theta}+\frac{\tan \theta}{\tan \theta-\tan 3 \theta}$ is equal to
(A) 0
(B) 1
(C) -1
(D) 2
77. If a and b can take values $1,2,3,4$. Then the number of the equations of the form $a x^{2}+b x+1=0$ having real roots is
(A) 10
(B) 7
(C) 6
(D) 12
78. If $\left(a^{2}+c^{2}\right) x^{2}+2(a b+c d) x+b^{2}+d^{2}=0$ has no real roots, then
(A) $a d=b c$
(B) $a b=c d$
(C) $\mathrm{ac}=\mathrm{bd}$
(D) $\mathrm{ad} \neq \mathrm{bc}$
79. An isosceles triangle has two equal sides of length 'a' and angle between them is α. The area of the triangle is
(A) $a^{2} \cos \alpha$
(B) $\frac{a^{2}}{2} \cos \alpha$
(C) $\frac{a^{2}}{2} \sin \alpha$
(D) $a^{2} \sin \alpha$
80. $A B C$ is an isosceles right triangle $\angle B=90^{\circ}$. Similar triangles $A C D$ and $A B E$ are constructed an sides $A C$ and $A B$. The ratio between the areas of $\triangle A B E$ and $\triangle A C D$ is
(A) $1: 2$
(B) $2: 1$
(C) $1: \sqrt{2}$
(D) $1: 4$
81. If A lies in II quadrant and $3 \tan A+4=0$, then value of $2 \cot A-5 \cos A+\sin A$ is equal to
(A) $-\frac{53}{10}$
(B) $\frac{23}{10}$
(C) $\frac{37}{10}$
(D) $\frac{7}{10}$
82. If $\sin x+\cos x=\sqrt{y+\frac{1}{y}}, x \in[0, \pi]$, then
(A) $x=\frac{\pi}{4}$
(B) $x=\frac{3 \pi}{4}$
(C) $x=\frac{5 \pi}{4}$
(D) $x=\frac{7 \pi}{8}$
83. $\frac{\cos \theta}{p}=\frac{\sin \theta}{q}$. Then, $\frac{p}{\sec 2 \theta}+\frac{q}{\operatorname{cosec} 2 \theta}$ is
(A) p
(B) q
(C) pq
(D) $\frac{p}{q}$
84. The system of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ have no solution if
(A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
(B) $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
(C) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(D) none of these
85. The value of k for which the system of equations $k x-y=2$ and $6 x-2 y=3$ has a unique solution is
(A) $k \neq 2$
(B) $\mathrm{k}=3$
(C) $k \neq 6$
(D) $k \neq 3$
86. The values of a and b for which the following system of equations has infinitely many solutions $(2 a-1) x-3 y=5,3 x+(b-2) y=3$ are
(A) $\frac{1}{5}, 3$
(B) $4, \frac{1}{2}$
(C) $3, \frac{1}{5}$
(D) $2, \frac{1}{3}$
87. The line $x-y=3$ passes through
(A) $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant
(B) $1^{\text {st }}, 3^{\text {rd }}$ and $4^{\text {th }}$ quadrant
(C) $1^{\text {st }}, 2^{\text {nd }}$ and $4^{\text {th }}$ quadrant
(D) $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ quadrant
88. If the polynomials $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+a$ leave the same remainder when divided by $(x-3)$, the value of a is
(A) -1
(B) 1
(C) $1 / 2$
(D) $-1 / 2$
89. The LCM of $x y+y z+z x+y^{2}$ and $x^{2}+x y+y z+z x$ is
(A) $x+y$
(B) $y+z$
(C) $(x+y)(y+z)(z+x)$
(D) $x^{2}+y^{2}$
90. If $x-\frac{1}{x}=2$, then the value of $x^{4}+\frac{1}{x^{4}}$ is
(A) 4
(B) 8
(C) 12
(D) 34
91. $\frac{2}{x-2}+\frac{4}{x-3}=\frac{6}{x-1}, x \in R, x \neq 1, x \neq 2, x \neq 3$, then x is equal to
(A) $16 / 5$
(B) $11 / 5$
(C) $21 / 5$
(D) $23 / 5$
92. $a x^{3}+b x^{2}+c x+d=0$ is said to be cubic polynomial if:
(A) $d \neq 0$
(B) $\mathrm{c} \neq 0$
(C) $b \neq 0$
(D) $a \neq 0$
93. If α and β are the zeroes of the polynomial $f(x)=x^{2}+p x+q$, then a polynomial having $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ as its zeroes is:
(A) $x^{2}+q x+p$
(B) $x^{2}-p x+q$
(C) $q x^{2}+p x+1$
(D) $p x^{2}+q x+1$
94. If α, β are the zeroes of the polynomial $f(x)=x^{2}-p(x+1)-c$, then $(\alpha+1)(\beta+1)$ is equal to:
(A) $\mathrm{c}-1$
(B) $1-\mathrm{c}$
(C) c
(D) $1+c$
95. Every quadratic polynomial can have at the most:
(A) one zero
(B) two zeroes
(C) three zeroes
(D) four zeroes
96. $\sec ^{2} \theta-\sec ^{2} \theta \operatorname{cosec}^{2} \theta$ is equal to
(A) $\sec ^{2} \theta$
(B) $\operatorname{cosec}^{2} \theta$
(C) $-\operatorname{cosec}^{2} \theta$
(D) None of these
97. If $\tan \theta=\frac{12}{5}$, find the value of $\sin \theta-\cos \theta$ is
(A) $\frac{5}{13}$
(B) $\frac{6}{13}$
(C) $\frac{17}{13}$
(D) $\frac{7}{13}$
98. The value of $\sin \left(45^{\circ}+\theta\right)-\cos \left(45^{\circ}-\theta\right)$ is equal to
(A) $2 \cos \theta$
(B) $2 \sin \theta$
(C) 1
(D) 0
99. The value of $\frac{1-\tan 10^{\circ}}{1+\tan 10^{\circ}}$ is equal to
(A) $\tan 55^{\circ}$
(B) $\tan 35^{\circ}$
(C) $\tan 45^{\circ}$
(D) None of these
100. The value of $\cos 15^{\circ}$ is
(A) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(B) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(C) $\frac{\sqrt{3}}{2 \sqrt{2}}$
(D) none of these
101. The minimum value of $\cos (\cos x)$ is
(A) 0
(B) $-\cos 1$
(C) $\cos 1$
(D) -1
102. If $\sin x=\cos ^{2} x$, then $\cos ^{2} x\left(1+\cos ^{2} x\right)$ is equal to
(A) 0
(B) 1
(C) 2
(D) none of these
103. If $\triangle A B C$ and $\triangle D E F$ are similar such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$, then $E F=$
(A) 16 cm
(B) 12 cm
(C) 8 cm
(D) 4 cm
104. D, E, F are the mid points of the sides $B C, C A$ and $A B$ respectively of a $\triangle A B C$. The ratio of the areas of $\triangle D E F$ and $\triangle A B C$ is
(A) $1: 2$
(B) $1: 3$
(C) $1: 4$
(D) $1: 8$
105. In the figure, $D E \| B C$ and $A D: D B=2: 3$, then $\operatorname{ar}(\triangle A D E): \operatorname{ar}(\triangle A B C)$ is
(A) $2: 5$
(B) $2: 3$
(C) $3: 5$
(D) $4: 25$

Space for Rough Work

FIITJ EE sAmPLE PAPER - 2016

for students presently in
Class 10
Paper 2
ANSWERS

1.	D	2.	D	3.	D	4.	D
5.	B	6.	C	7.	D	8.	D
9.	D	10.	C	11.	C	12.	B
13.	A	14.	C	15.	A	16.	D
17.	D	18.	A	19.	B	20.	A
21.	C	22.	A	23.	D	24.	D
25.	B	26.	C	27.	B	28.	B
29.	A	30.	B	31.	A	32.	A
33.	A	34.	B	35.	A	36.	D
37.	C	38.	B	39.	A	40.	C
41.	D	42.	C	43.	B	44.	A
45.	C	46.	D	47.	B	48.	C
49.	C	50.	C	51.	C	52.	A
53.	C	54.	B	55.	C	56.	B
57.	D	58.	B	59.	A	60.	D
61.	A	62.	C	63.	B	64.	A
65.	B	66.	C	67.	D	68.	D
69.	B	70.	C	71.	B	72.	C
73.	C	74.	D	75.	A	76.	B
77.	B	78.	D	79.	C	80.	A
81.	B	82.	A	83.	A	84.	B
85.	D	86.	C	87.	B	88.	A
89.	C	90.	D	91.	B	92.	D
93.	C	94.	B	95.	B	96.	C
97.	D	98.	D	99.	B	100.	A
101.	C	102.	B	103.	A	104.	C
105.	D						

