FIITJ EE SAMPLE PAPER
 (FIITJ EE Talent Reward Exam-2020)

for students presently in

Class 11 (Paper 2)

Instructions:

Caution: Class, Paper, Code as given above MUST be correctly marked on the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

1. You are advised to devote 45 Minutes on Section-I and 135 Minutes on Section-II.
2. This Question paper consists of $\mathbf{2}$ sections. Marking scheme is given in table below:

Section	Subject		Question no.	Marking Scheme for each question		
			correct answer	wrong answer		
SECTION - I	PHYSICS	(PART-A)		1 to 9	+2	-0.5
	CHEMISTRY	(PART-B)	10 to 18	+2	-0.5	
	MATHEMATICS	(PART-C)	19 to 27	+2	-0.5	
SECTION - II	PHYSICS	(PART-A)	28 to 41	+3	-1	
	CHEMISTRY	(PART-B)	42 to 55	+3	-1	
	MATHEMATICS	(PART-C)	56 to 69	+3	-1	
	PHYSICS	(PART-D)	70 to 75	+3	0	
	CHEMISTRY	(PART-E)	76 to 81	+3	0	
	MATHEMATICS	(PART-F)	82 to 87	+3	0	

3. Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
4. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
5. Before attempting paper write your OMR Answer Sheet No., Registration Number, Name and Test Centre in the space provided at the bottom of this sheet.
6. See method of marking of bubbles at the back of cover page for question no. $\mathbf{7 0}$ to 87.

Note: Please check this Question Paper contains all 87 questions in serial order. If not so, exchange for the correct Question Paper.

OMR Answer Sheet No. :	
Registration Number $\quad:$	
Name of the Candidate $:$	
Test Centre	$:$

For questions 70 to 87
Numerical based questions single digit answer 0 to 9

Example 1:

If answer is 6 .
Correct method:
(0) 1
(2)
(4)
(6) 7

Example 2:

If answer is 2.
Correct method:
(0) (1)
(2) (3)
(4)
(5)
(6) (7) (8) (9)

Recommended Time: 45 Minutes for Section - I

Section - I
 PHYSICS - (PART - A)

This part contains 9 Multiple Choice Guestions number 1 to 9. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. If μ is the coefficient of friction between each block and floor then find the minimum value of F to move the system
(A) $\mu m_{1} g$
(B) $\mu m_{2} g$
(C) $\mu\left(m_{1}+m_{2}\right) g$
(D) $\mu\left(m_{1}-m_{2}\right) g$

μ
2. A body moves 4 m towards east then 3 m north. The displacement and distance covered by the body are
(A) $7 \mathrm{~m}, 6 \mathrm{~m}$
(B) $6 \mathrm{~m}, 5 \mathrm{~m}$
(C) $5 \mathrm{~m}, 7 \mathrm{~m}$
(D) $4 \mathrm{~m}, 3 \mathrm{~m}$
3. The dimensions of pressure gradient for a liquid in a cylinder is
(A) $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$.
(B) $\mathrm{ML}^{-2} \mathrm{~T}^{-1}$
(C) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
(D) $\mathrm{ML}^{-1} \mathrm{~T}^{2}$
4. \quad A body of mass m is suspended by two strings making angles α and β with the horizontal. Find the tension in the strings.
(A) $T_{1}=\frac{m g \cos \beta}{\sin (\alpha+\beta)}=T_{2}$
(B) $T_{1}=T_{2}=\frac{m g \sin \beta}{\sin (\alpha+\beta)}$

(C) $T_{1}=\frac{m g \cos \beta}{\sin (\alpha+\beta)}, T_{2}=\frac{m g \cos \alpha}{\sin (\alpha+\beta)}$
(D) none of these

FTRE-2020-C-XI (Paper-2)-PCM-4

5. Error in the measurement of radius of a sphere is 1%. Then the error in the measurement of volume is
(A) 1%
(B) 5%
(C) 3%
(D) 8%
6. The velocity of projection of an oblique projectile is: $\vec{v}=3 \hat{i}+2 \hat{j}$ (in m / s). The speed of the projectile at the highest point of the trajectory is,
(A) $3 \mathrm{~ms}^{-1}$
(B) $2 \mathrm{~ms}^{-1}$
(C) $1 \mathrm{~ms}^{-1}$
(D) zero
7. A ball falls vertically on to a floor, with momentum p, and then bounces repeatedly, the coefficient of restitution is e. The total momentum imparted by the ball to the floor is
(A) $p(1+e)$
(B) $\frac{p}{1-e}$
(C) $p \frac{(1+e)}{(1-e)}$
(D) $p\left(1-\frac{1}{e}\right)$
8. On a horizontal frictionless frozen lake, a girl (36 kg) and a box (9 kg) are connected to each other by means of a rope. Initially they are 20 m apart. The girl exerts a horizontal force on the box, pulling it towards her. How far has the girl travelled when she meets the box?
(A) 10 m
(B) Since there is not friction, the girl will not move
(C) 16 m
(D) 4 m
9. A 750 W motor drivers a pump which lifts 300 litres of water per minute to a height of 6 meters. The efficiency of the motor is nearly (take acceleration due to gravity to be $10 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 30%
(B) 40%
(C) 50%
(D) 20%

Space for Rough Work

CHEMISTRY - (PART - B)

This part contains 9 Multiple Choice Questions number 10 to 18. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
10. How many maximum number of electrons of an atom will have the following set of quantum numbers?

$$
\mathrm{n}=4, \ell=0,1,2, \mathrm{~m}=0, \pm 1, \mathrm{~s}=+1 / 2
$$

(A) 18
(B) 7
(C) 14
(D) 9
11. What will be the molarity of 36.5 mass $\%$ solution of HCl ? The density of the solution is $0.8 \mathrm{~g} / \mathrm{mL}$ at a certain temperature.
(A) 0.008 M
(B) 0.8 M
(C) 8 M
(D) 80 M
12. Atoms having which of the following outermost electronic configuration has the highest value of electron gain enthalpy or electron affinity?
(A) $n s^{2} n p^{3}$
(B) $n s^{2} n p^{2}$
(C) $(n+1) s^{2}(n+1) p^{3}$
(D) $n s^{2} n p^{1}$
13. The R.M.S velocity of a monoatomic gas was $\times \mathrm{m} / \mathrm{s}$ at T Kelvin. When the temperature is reduced to half of its original value, the atoms dimerise to molecules. What will be the new R.M.S velocity in m / s unit?
(A) $\frac{x}{4}$
(B) $\frac{x}{2}$
(C) $\frac{x}{\sqrt{2}}$
(D) $4 x$
14. The most stable carbanion out of the following is:
(A)

(B)

(C)

(D)

15. In which of the following option, the second ionization energy is given in the correct order.
(A) $\mathrm{B}>\mathrm{Be}$
(B) $\mathrm{N}>\mathrm{O}$
(C) $\mathrm{Mg}>\mathrm{Na}$
(D) $\mathrm{C}>\mathrm{O}$
16. Which of the following compound forms the most stable carbocation on ionization?
(A)

(C)

(B)

(D)

17. What is the IUPAC name of

(A) 4-formyl-2-butanone
(B) 3-ketobutanal
(C) 2-ketobutanal
(D) 1-formyl-2-butanone
18. Which compound contains the largest anion?
(A) $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
(B) CaO
(C) $\mathrm{Be}_{2} \mathrm{C}$
(D) BeF_{2}

MATHEMATICS - (PART - C)

This part contains 9 Multiple Choice Questions number 19 to 27. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
19. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are, respectively
(A) 4,7
(B) 7,4
(C) 4,4
(D) 7,7
20. General solution of $\tan 5 \theta=\cot 2 \theta$ will be $(\mathrm{n} \in \mathrm{Z})$
(A) $\theta=\frac{\mathrm{n} \pi}{7}+\frac{\pi}{14}$
(B) $\theta=\frac{\mathrm{n} \pi}{7}+\frac{\pi}{5}$
(C) $\theta=\frac{n \pi}{7}+\frac{\pi}{2}$
(D) $\theta=\frac{\mathrm{n} \pi}{7}+\frac{\pi}{3}$
21. The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a , is
(A) $\frac{\mathrm{a}}{4} \cot \left(\frac{\pi}{2 \mathrm{n}}\right)$
(B) $\operatorname{acot}\left(\frac{\pi}{n}\right)$
(C) $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$
(D) $\operatorname{acot}\left(\frac{\pi}{2 n}\right)$
22. If $\mathrm{w}=\frac{\mathrm{z}}{\mathrm{z}-\frac{1}{3} \mathrm{i}}$ and $|\mathrm{w}|=1$, then z lies on
(A) an ellipse
(B) a circle
(C) a straight line
(D) a parabola
23. If $\frac{\cos \theta}{p}=\frac{\sin \theta}{q}$, then $\frac{p}{\sec 2 \theta}+\frac{q}{\operatorname{cosec} 2 \theta}=$
(A) p
(B) q
(C) pq
(D) $\frac{p}{q}$
24. If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
(A) $r>2$
(B) $2<r<8$
(C) $r<2$
(D) $r=2$
25. If $<a_{n}>$ is an A.P. and $a_{1}+a_{4}+a_{7}+\ldots+a_{16}=147$, then $a_{1}+a_{6}+a_{11}+a_{16}=$
(A) 96
(B) 98
(C) 100
(D) none of these
26. If the focus of a parabola is $(1,0)$ and its directrix is $x+y=5$, then its vertex is,
(A) $(0,1)$
(B) $(0,-1)$
(C) $(2,1)$
(D) $(3,2)$
27. The equation of an ellipse, whose length of major axis is 8 and eccentricity $\frac{1}{2}$, is
(A) $3 x^{2}+4 y^{2}=12$
(B) $3 x^{2}+4 y^{2}=48$
(C) $4 x^{2}+3 y^{2}=12$
(D) $3 x^{2}+9 y^{2}=12$

Space for Rough Work

Recommended Time: 135 Minutes for Section - II

Section - II

PHYSICS - (PART - A)

This part contains 14 Multiple Choice Guestions number 28 to 41. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
28. A rigid body rotates about a fixed axis with variable an angular velocity equal to ($\alpha-\beta \mathrm{t})$ at time t , where α and β are constants. The angle through which it rotates before it comes to rest is:
(A) $\frac{\alpha^{2}}{2 \beta}$
(B) $\frac{\alpha^{2}-\beta^{2}}{2 \alpha}$
(C) $\frac{\alpha^{2}-\beta^{2}}{2 \beta}$
(D) $\frac{\alpha(\alpha-\beta)}{2}$
29. From a uniform disc of radius R an equilateral triangle of side $\sqrt{ } 3 R$ is removed as shown. Find out the centre of mass of the remaining figure.
(A) $(0,0)$
(B) $(0, R)$
(C) $(\mathrm{R}, 0)$
(D) $\left(0, \frac{\sqrt{3}}{2 R}\right)$

30. The masses collide in air stick together. After how much time combined mass will fall to the ground (calculate the time from the starting when the motion was started)
(A) $(1+\sqrt{2}) \mathrm{s}$
(B) $2 \sqrt{2} s$
(C) $(2+\sqrt{2}) \mathrm{s}$
(D) none of these

31. A liquid is filled in a spherical container of radius R till a height h. At this position the liquid surface at the edges is also horizontal. The contact angle is
(A) 0
(C) $\cos ^{-1}\left(\frac{h-R}{R}\right)$
(B) $\cos ^{-1}\left(\frac{R-h}{R}\right)$
(D) $\sin ^{-1}\left(\frac{R-h}{R}\right)$

32. Two particles of mass m each are rigidly attached to a disc of same mass and radius R at its periphery as shown. Disc at this moment is rolling without slipping on a fixed horizontal surface. If the speed of the centre of disc is v_{0}, the total kinetic energy of the system at this instant will be

(A) $m v^{2}$
(B) $\frac{5}{4} m v_{0}^{2}$
(C) $\frac{7}{4} m v_{0}^{2}$
(D) $\frac{11}{4} m v_{0}^{2}$
33. A person walking at the rate of $3 \mathrm{~km} /$ hour, the rain appears to fall vertically when he increases his to speed $6 \mathrm{~km} / \mathrm{hr}$ it appears to meet him at angle of 45° with vertical. The speed of rain is
(A) $3 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
(B) $\frac{3}{\sqrt{2}} \mathrm{~km} / \mathrm{hr}$
(C) $6 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
(D) $2 \sqrt{3} \mathrm{~km} / \mathrm{hr}$
34. All cylinders are identical and no slipping at any contact. The ratio of angular speeds of upper cylinders to lower cylinders is
(A) $1 / 3$
(B) 3
(C) 1
(D) none

35. Four identical particles are placed at the corners of a square of side ℓ. If at $t=0$ all the particles start moving simultaneously with speed v towards each other i.e. A towards B, B towards C and so on. Find the time after which they will combine together

(A) $\frac{\ell}{v}$
(B) $\frac{\ell}{\sqrt{2} v}$
(C) $\frac{\sqrt{2} \ell}{v}$
(D) $\frac{2 \ell}{v}$
36. For what value of m (in kg), the pulley P_{1} remains at rest.
(A) 6
(B) 2
(C) 10.66
(D) 5.33

37. In the figure shown, block P and Q move towards left with velocity v_{1} and v_{2} along horizontal direction respectively, then the ratio of $\frac{v_{1}}{v_{2}}$ will be

(A) $\frac{\cos \theta_{1}}{\cos \theta_{2}}$
(B) $\frac{\cos \theta_{2}}{\cos \theta_{1}}$
(C) $\frac{\sin \theta_{2}}{\sin \theta_{1}}$
(D) $\frac{\sin \theta_{1}}{\sin \theta_{2}}$
38. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along
(A) the radius
(B) the tangent to the orbit
(C) a line perpendicular to the plane of rotation
(D) none of these
39. Cubical block of wood of side 10 cm floats at the interface between oil and water as shown in the figure with its lower face 2.0 cm below the interface. The density of oil $0.5 \mathrm{gm} / \mathrm{cm}^{3}$. The mass of the block is
(A) 600 gm
(B) 680 gm
(C) 420 gm
(D) 210 gm

40. A particle of mass M is moving in a horizontal circle of radius R with uniform speed V . When it moves from one point to a diametrically opposite point its:
(A) momentum does not change
(B) momentum change by 2 MV
(C) KE changes by MV^{2}
(D) KE changes by $(1 / 4) \mathrm{MV}^{2}$
41. A particle is moving on an elliptical path as shown, speed of the particle is constant. Its acceleration is maximum at
(A) A
(B) B
(C) C
(D) same everywhere

CHEMISTRY - (PART - B)

This part contains 14 Multiple Choice Questions number 42 to 55. Each question has 4 choices $(A),(B),(C)$ and (D), out of which ONLY ONE is correct.
42. According to Bohr's theory, the radius of orbits of H or H -like species is expressed as

$$
\begin{aligned}
& r_{n} \alpha \frac{n^{2}}{Z} \\
& \text { or, } r_{n}=K \times \frac{n^{2}}{Z}
\end{aligned}
$$

The constant K is given as:
(A) $\frac{h^{2}}{2 \pi^{2} \mathrm{me}^{4}}$
(B) $\frac{\mathrm{h}^{2}}{4 \pi^{2} \mathrm{me}^{2}}$
(C) $\frac{2 \pi^{2} m e^{4}}{h^{2}}$
(D) $\frac{4 \pi^{2} m e^{2}}{h^{2}}$
43. Which of the following is the weakest base?
(A)

(B)

44. Phosphorus undergoes $\mathrm{sp}^{3} \mathrm{~d}$ hybridization in a series of its compounds containing F and Cl atoms. Choose the correct statement.
(A) The dipole moment of $\mathrm{PF}_{2} \mathrm{Cl}_{3}$ is higher than that of $\mathrm{PF}_{3} \mathrm{Cl}_{2}$
(B) Phosphorus displays maximum electronegativity in $\mathrm{PF}_{2} \mathrm{Cl}_{3}$ as compared to other compounds like $\mathrm{PF}_{3} \mathrm{Cl}_{2}, \mathrm{PF}_{4} \mathrm{Cl}$ etc.
(C) The crystal structure of $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ contains $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PF}_{6}\right]^{-}$
(D) The bond angle $\angle \mathrm{CIPCl}$ in PFCl_{4} is 180°
45. Which of the following solutions make buffer?
(A) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$ (1:1 molar ratio)
(B) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$ (2:1 molar ratio)
(C) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$ (1:2 molar ratio)
(D) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$ (4:3 molar ratio)
46. The solubility product of Pbl_{2} is $32 \times 10^{-9} \mathrm{~mol}^{3} \mathrm{~L}^{-3}$ at a certain temperature. What is the molarity of the saturated solution of PbI_{2} ?
(A) 0.0002 M
(B) 0.002 M
(C) 0.2 M
(D) 0.02 M
47. 0.98 g of a polybasic acid (mol.mass $=98$) requires 30 mL of $0.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ for complete neutralization. What is the basicity of the acid?
(A) 4
(B) 2
(C) 3
(D) 1
48. $\quad X(g) \rightleftharpoons Y(g)+Z(g)$

The equilibrium constant K_{p} of above reaction is 3 atm at a certain temperature. If equal moles of X, Y and Z are present at equilibrium, the equilibrium pressure would be:
(A) 12 atm
(B) 3 atm
(C) 6 atm
(D) 9 atm
49. For which of the following reaction $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$?
(A) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(C) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
(D) $\mathrm{MgCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
50. In which state a chlorine atom contains five unpaired electrons?
(A) Ground state
(B) First excited state
(C) Second excited state
(D) Third excited state
51. Which of the following is NOT a property of borax?
(A) It is soluble in water
(B) It is crystallized from aqueous solution as a decahydrated salt
(C) It's anion undergoes hydrolysis in water
(D) On heating it forms sodium boride
52. Which of the following molecule has the highest lattice energy?
[Assume the coordination number and Mandelung constant for the compounds have same values]
(A) CaO
(B) MgO
(C) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) BaO
53. $\mathrm{SiO}_{2} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{HF}}(\mathrm{A}) \xrightarrow{\mathrm{HF}}(\mathrm{B})$

Product (B) in the above reaction is
(A) SiF_{4}
(B) $\mathrm{H}_{2}\left[\mathrm{SiF}_{6}\right]$
(C) SiH_{4}
(D) $\mathrm{H}_{2} \mathrm{SiO}_{3}$
54. Which of the following vessel is not used to store NaOH ?
(A) Iron
(B) Glass
(C) Aluminium
(D) Plastic
55. Which of the following concentration term does NOT depend on temperature?
(A) Molarity
(B) Molality
(C) Formality
(D) Normality

MATHEMATICS - (PART - C)

This part contains 14 Multiple Choice Questions number 56 to 69. Each question has 4 choices $(A),(B),(C)$ and (D), out of which ONLY ONE is correct.
56. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
(A) lie on a straight line
(B) lie on an ellipse
(C) lie on a circle
(D) are vertices of a triangle
57. Let z and w are two non zero complex numbers such that $|\mathrm{z}|=|\mathrm{w}|$, and $\operatorname{Arg}(\mathrm{z})+\operatorname{Arg}(\mathrm{w})=\pi$, then
(A) $\mathrm{z}=\mathrm{w}$
(B) $\mathrm{z}=\overline{\mathrm{W}}$
(C) $\overline{\mathrm{z}}=\overline{\mathrm{w}}$
(D) $\mathrm{z}=-\overline{\mathrm{W}}$
58. The locus of a point $\mathrm{P}(\alpha, \beta)$ moving under the condition that the line $\mathrm{y}=\alpha \mathrm{x}+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
(A) an ellipse
(B) a circle
(C) a parabola
(D) a hyperbola
59. If $X \cup\{1,2\}=\{1,2,3,5,9\}$, then
(A) the smallest set X is $\{3,5,9\}$
(B) the smallest set X is $\{2,3,5,9\}$
(C) the largest set X is $\{1,2,5,9\}$
(D) the largest set X is $\{2,3,4,9\}$
60. If $y=\frac{\sin x+\cos x}{\sin x-\cos x}$, then $\frac{d y}{d x}$ at $x=0$ is $(-n)$. Find n
(A) 2
(B) 3
(C) 4
(D) 5
61. $\sin ^{2} \frac{\pi}{8}+\sin ^{2} \frac{3 \pi}{8}+\sin ^{2} \frac{5 \pi}{8}+\sin ^{2} \frac{7 \pi}{8}$ is equal to
(A) 1
(B) -1
(C) 0
(D) 2
62. If in a triangle $A B C, a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides a, b and c
(A) satisfy $a+b=c$
(B) are in A.P.
(C) are in G.P.
(D) are in H.P.
63. A focus of an ellipse is at origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{8}{3}$
64. The sum of the series $\frac{5}{13}+\frac{55}{13^{2}}+\frac{555}{13^{3}}+\ldots \ldots . \infty$ is
(A) $50 / 27$
(B) $13 / 36$
(C) $65 / 36$
(D) none of these
65. A variable circle passes through the fixed point $A(p, q)$ and touches x - axis. The locus of the other end of the diameter through A is-
(A) $(x-p)^{2}=4 q y$
(B) $(x-q)^{2}=4 p y$
(C) $(y-p)^{2}=4 q x$
(D) $(y-q)^{2}=4 p x$
66. Let $\mathrm{X}=\{1,2,3,4,5\}$ and $\mathrm{Y}=\{1,3,5,7,9\}$. Then which of the following is not a relation from X to Y
(A) $\mathrm{R}_{1}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=2+\mathrm{x}, \mathrm{x} \in \mathrm{X}, \mathrm{y} \in \mathrm{Y}\}$
(B) $\mathrm{R}_{2}=\{(1,1),(2,1),(3,3),(4,3),(5,5)\}$
(C) $\mathrm{R}_{3}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$
(D) $\mathrm{R}_{4}=\{(1,3),(2,5),(2,4),(7,9)\}$
67. The sum of infinite series $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\ldots \ldots \ldots . \infty$ is
(A) $1 / 3$
(B) 3
(C) $1 / 4$
(D) ∞
68. $\quad \sin 163^{\circ} \cos 347^{\circ}+\sin 73^{\circ} \sin 167^{\circ}=$
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) none of these
69. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
(A) $\frac{3}{2}$
(B) $\frac{2}{3}$
(C) 1
(D) -1

PHYSICS - (PART - D)

This part contains 6 Numerical Based Guestions number 70 to 75. Each question has Single Digit Answer 0 to 9.
70. A ball is released form a point, it goes vertically downwards and collides with a fixed smooth inclined plane of angle of inclination of 30° from the ground, then ball goes horizontally.
The coefficient of restitution is $\frac{1}{x}$, where ' x ' is

71. Two particles of masses m_{1} and m_{2} connected by an inextensible massless string are kept on a fixed wedge. If $\mu_{1}=\frac{1}{2}, \mu_{2}=\frac{1}{3}, m_{1}=1 \mathrm{~kg}, \mathrm{~m}_{2}=2 \mathrm{~kg}$. Find the acceleration of the particles

72. A car driver applies the brakes which retards the car at a rate of $8 \mathrm{~m} / \mathrm{s}^{2}$. If the initial velocity of the car is $10 \mathrm{~m} / \mathrm{s}$, the speed of the car after 5 s will be
73. Coefficient of friction between 10 kg block and 20 kg is 0.4 . If the friction between them is 30 N . If the value of the force being applied on 10 kg , (the floor is smooth) is 9 K , then find the value of K .

74. The length of the component of $\vec{A}=3 \hat{i}+4 \hat{j}-\hat{k}$ along the direction of $\vec{B}=\hat{i}+\hat{j}+\hat{k}$ is given by $\sqrt{3} x$ then what is x ?
75. Two blocks of mass $\mathrm{m}=1 \mathrm{~kg}$ and $\mathrm{M}=2 \mathrm{~kg}$ are in contact on a frictionless table. A horizontal force $\mathrm{F}(=3 \mathrm{~N})$ is applied to m . The force $(\ln \mathrm{N})$ of contact between the blocks will be

CHEMISTRY - (PART - E)

This part contains 6 Numerical Based Questions number 76 to 81. Each question has Single Digit Answer 0 to 9.
76. How many vacant atomic orbtial(s) is/are present in the outermost orbit of Na atom?
77.

If the ratio of the percentage of s-orbital character to the percentage of p-orbital character in a P P bond in the above figure, is expressed as $x: y$, the value of $(x+y)$ will be
78. How many moles of electron(s) is/are present in 1.8 mL of water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{cc}$) ?
79. Element (X) is present in group-2 and element (Y) is present in group-15 of the periodic table. How many atoms will be present in the compound formed between X and Y ?
80. A mixture containing $4 \mathrm{~g} \mathrm{NaOH}, 10.6 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and 8.4 g NaHCO 3 required 100 mL of HCl solution for complete reaction in presence of phenolphthalein indicator. If the molarity of the HCl solution is $x M$, the value of x is
81. The sum of the number of unpaired electrons present in an oxygen atom and an oxygen molecule according to molecualr orbital theory is:

MATHEMATICS - (PART - F)

This part contains 6 Numerical Based Questions number 82 to 87. Each question has Single Digit Answer 0 to 9.
82. The number of roots of the equation $\tan x+\sec x=2 \cos x$ in the interval $[0,2 \pi]$ is
83. If $\frac{5+9+13+\ldots \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}$, then n is
84. If the tangent at the point P on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line $5 x-2 y+6=0$ at a point Q on the y-axis, then the length of $P Q$ is -
85. The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then the value of b^{2} will be
86. The number of integral values of x satisfying $\frac{(x-2)(2 x-3)^{2}(x-6)^{3}}{(x+5)^{4}}<0$ is
87. If the distance of 2 points P and Q from the focus of a parabola $y^{2}=4 a x$ are 4 and 9 respectively, then the distance of the point of intersection of tangents at P and Q from the focus is

FIIT] EE SAMPLE PAPER - 2020 (FIITJ EE Talent Reward Exam-2020)

for students presently in

Class 11 (Paper 2) ANSWERS

1.	C	2.	C	3.	A	4.
5.	C	6.	A	7.	C	8.
9.	B	10.	B	11.	C	12.
13.	B	14.	A	15.	A	16.
17.	B	18.	C	19.	B	20.
21.	C	22.	C	23.	A	24.
25.	B	26.	C	27.	B	28.
29.	B	30.	D	31.	B	32.
33.	A	34.	B	35.	A	36.
37.	B	38.	C	39.	A	40.
41.	C	42	B	43.	C	44.
45.	C	46	B	47.	C	48.
49.	C	50.	C	51.	D	52.
53.	B	54.	C	55.	B	56.
57.	D	58.	D	59.	A	60.
61.	D	62	B	63.	D	64.
65.	A	66.	D	67.	A	68.
69.	A	70.	3	71.	0	72.
73.	5	74.	2	75.	2	76.
77.	4	78.	1	79.	5	80.
81.	4	82.	2	83.	7	84.
85.	7	86.	3	87.	6	

