DRENACHARYA
 360° DIAGNOSTIC \& SCHOLARSHIP EXAM

Sample Paper
 for Students presently in Class XI

Paper 3 JEE Advanced

Please read the instructions and guidelines carefully :

Important Note : Please ensure to accurately input the details for the Class and Paper No. as indicated at the top of this sheet into the corresponding columns / fields on the OMR sheet before proceeding with the paper. Incorrectly filled information regarding the class or paper may result in inaccurate outcomes or results.
"This paper has been scientifically designed to evaluate your potential - manifested and hidden for the target examinations mentioned in various sections of the paper. Thus, your adherence to the instructions is critical in the evaluation of the same"

1. This Question paper consists of 1 sections.
2. Student should devote allotted time for each section. If a section is easy, then it is easy for everyone \& was meant to be like that with a goal in mind. Do not switch over to another section if you find the section to be easy. If a section is tough, then it is tough for everyone. You are advised to spend 90 Minutes on Section-I. This adherence is crucial for assessing your true potential, as this section is meticulously crafted to evaluate your potential for the corresponding competitive examination.
3. Sheets will be given to each candidate for rough work. Candidate must fill all details on the rough sheet and submit the same to invigilator along with OMR sheet. Candidate must mention the Question No. while doing the rough work in the sheet.
4. Please note candidates are not allowed to bring any prohibited items into the exam hall such as electronic devices, mobile phones, smart watch, earphones, calculators, books, notes, formula sheets, and bags.
5. Marking scheme is given in table below:

Section	Subject		Question no.	Marking Scheme for each question		
			Correct answer	Wrong answer		
SECTION - I JEE Advanced Time Allotted: 90 Minutes	PHYSICS	(PART-A)		1 to 5	+3	-1
	CHEMISTRY	(PART-B)	6 to 10	+3	-1	
	MATHEMATICS	(PART-C)	11 to 15	+3	-1	
	PHYSICS	(PART-D)	16 to 22	+4	-1	
	CHEMISTRY	(PART-E)	23 to 29	+4	-1	
	MATHEMATICS	(PART-F)	30 to 36	+4	-1	

Section - 1

Time: 90 Minutes
 PHYSICS - (PART - A)

This part contains 5 Multiple Choice Questions number 1 to 5. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. A uniform rod of mass M and length ℓ is moving on a smooth horizontal plane, such that its one end is moving with a velocity v_{0} and other end is moving with a velocity $2 \mathrm{v}_{0}$ in the same direction as shown. Then, the kinetic energy of the rod is

(A) $\frac{13}{24} \mathrm{Mv}_{0}^{2}$
(B) $\frac{24}{31} \mathrm{Mv}_{0}^{2}$
(C) $\frac{31}{24} \mathrm{Mv}_{0}^{2}$
(D) $\frac{7}{6} M v_{0}^{2}$
2. A stick of length I and mass M lies on a frictionless horizontal surface on which it is free to move in any way. A ball of mass m moving with speed v collides elastically with the stick as shown in the figure. If after the collision ball comes to rest, then what should be the mass of
 the ball
(A) $\mathrm{m}=2 \mathrm{M}$
(B) $m=M$
(C) $m=M / 2$
(D) $m=M / 4$
3. The horizontal and vertical displacements of a particle moving along a curved line are given by $x=5 t$ and $y=2 t^{2}+t$. Time after which its velocity vector makes an angle of 45° with the horizontal is
(A) 0.5 s
(B) 1 s
(C) 2 s
(D) 1.5 s
4. Three blocks $\left(m_{1}, m_{2} \& m_{3}\right)$ are slid at constant velocity across a rough surface as shown. The coefficient of kinetic friction between each block and the surface is μ. What would be the force due to m_{1} on m_{2} ?

(A) $F-\left(m_{2}-m_{3}\right) g \mu$
(B) $\left(m_{2}+m_{3}\right) g \mu$
(C) $m_{1} g \mu-\left(m_{2}+m_{3}\right) g \mu$
(D) $\left(m_{1}+m_{2}+m_{3}\right) g \mu$
5. A side view of a simplified form of vertical latch B is as shown. The lower member A can be pushed forward in its horizontal channel. The sides of the channels are smooth, but at the interfaces of A and B, which are at 45° with the horizontal, there exists a static coefficient of friction $\mu=0.4$. What is the minimum force F (in N) that must be applied horizontally to A to start motion of the latch B upwards if it has a mass $\mathrm{m}=0.6 \mathrm{~kg}$?
(A) 10 N
(B) 0
(C) 14 N
(D) 22 N

CHEMISTRY - (PART - B)

This part contains 5 Multiple Choice Guestions number 6 to 10. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
6. Which of the following compounds cannot show geometrical isomerism?
(A)

(B)

(C)

(D)

7. pH of $10^{-6} \mathrm{M} \mathrm{NH} \mathrm{H}_{4} \mathrm{OH}(\mathrm{aq})$ solution will be $\left(\mathrm{K}_{\mathrm{b}}=10^{-5}\right)$
(A) 6.02
(B) 7.0
(C) 7.98
(D) 8.56
8. If a proton and α-particle are accelerated through the same potential difference, the ratio of de Broglie wavelength λ_{ρ} and λ_{α} is
(A) 2
(B) 1
(C) $2 \sqrt{2}$
(D) 3
9. Which two Fischer forms represent a pair of enantiomers?

I

II

III

IV
(A) I \& II
(B) III \& IV
(C) I \& IV
(D) II \& III
10. The structure

(A) geometrical isomerism
(B) optical isomerism
(C) geometrical \& optical isomerism
(D) tautomerism

MATHEMATICS - (PART - C)

This part contains 5 Multiple Choice Guestions number 11 to 15. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
11. If $x^{18}=y^{21}=z^{28}$ where x, y, z are positive real numbers not equal to 1 , then $3,3 \log _{y} x, 3 \log _{z} y$ and $7 \log _{x} z$ form an
(A) A.P
(B) G.P
(C) H.P
(D) None of these
12. If the point $P(2,-2)$ is the one end of the focal chord $P Q$ of the parabola $y^{2}=2 x$, then the slope of the tangent at Q is
(A) $\frac{-1}{2}$
(B) $\frac{1}{2}$
(C) -2
(D) 2
13. If a line passing through point $A(3,4)$ and having slope $\frac{2}{3}$ intersect circle $x^{2}+y^{2}=9$ at points P and Q. Then AP.AQ is equal to
(A) 4
(B) 6
(C) 8
(D) 16
14. If $\operatorname{Lim}_{x \rightarrow a} \tan \left(\frac{\pi x}{2 a}\right) \cdot \sin \left(\frac{x-a}{2}\right)=\frac{2}{\pi}$ then the value of ' a ' is
(A) 1
(B) -1
(C) 2
(D) -2
15. If in triangle $A B C, A^{\circ}(1,10)$, circumcentre $\left(-\frac{1}{3}, \frac{2}{3}\right)$ and orthocentre $-\left(\frac{11}{3}, \frac{4}{3}\right)$ then the co-ordinates of mid-point of side opposite to A is
(A) $\left(1,-\frac{11}{3}\right)$
(B) $(1,5)$
(C) $(1,-3)$
(D) $(1,6)$

PHYSICS - (PART - D)

This part contains ONE (01) comprehension. Based on comprehension, there are THRED (03) questions of Multiple Choice Guestions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for 6. No. 16 to 18

Two spheres A and B are moving on a smooth horizontal surface with same velocity v having some separation between them. A third sphere C is moving in opposite direction on same surface with same speed. All the spheres are of equal mass. The collisions are elastic. Let v_{cm} represents the centre of mass velocity of all the three spheres.

16. If A and B are connected to each other by a massless rigid rod, then the value of $v_{c m}$ after all the possible collisions have occurred will be
(A) $\frac{v}{3}$
(B) $\frac{2 v}{3}$
(C) v
(D) $\frac{3 v}{2}$
17. If A and B are connected to each other by a massless rigid rod, then during all the possible collisions
(A) momentum of A and B is conserved
(B) momentum of B and C is conserved
(C) momentum of B and C is not conserved
(D) momentum of A will remain constant
18. If A and B are connected to each other by an ideal string, then during all the possible collisions
(A) momentum of A and B is conserved
(B) momentum of B and C is conserved
(C) momentum of B and C is not conserved
(D) momentum of B will remain constant

This part contains TWO (02) comprehensions. Based on each comprehension, there are TWO (02) questions of Multiple Choice Guestions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for G. No. 19 to 20

A river of width d is flowing with uniform velocity u. A boat starts moving from point A (one bank of river) with speed u relative to the river. The direction of resultant velocity is always perpendicular to line joining boat and fixed point C (see figure). Point B is on the opposite side of the river and A, B, C are in straight line. If $A B=B C=d$

19. The path of boat is
(A) straight line
(B) parabolic
(C) circular
(D) curve but not parabolic or circular
20. The distance from B where the boat will reach the other bank of river is
(A) d
(B) $d \sqrt{2}$
(C) $\frac{d}{2}$
(D) $d \sqrt{3}$

Comprehension-2 for 8. No. 21 to 22

A solid cylinder of mass m and radius R is kept at rest on a plank of mass $2 m$ lying on a smooth horizontal surface. Massless and inextensible string connecting cylinder to the plank is passing over a massless pulley. The friction between the cylinder and the plank is sufficient to prevent slipping. Pulley A is pulled with a
 constant horizontal force F.
21. Acceleration of cylinder with respect to earth is
(A) $\frac{5 F}{21 m}$
(B) $\frac{F}{7 m}$
(C) $\frac{3 F}{7 m}$
(D) $\frac{2 F}{7 m}$
22. Acceleration of plank with respect to earth is
(A) $\frac{5 F}{21 m}$
(B) $\frac{F}{7 m}$
(C) $\frac{3 F}{7 m}$
(D) $\frac{2 F}{7 m}$

CHEMISTRY- (PART - E)

This part contains ONE (01) comprehension. Based on comprehension, there are THRPE (03) questions of Multiple Choice Guestions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for G. No. 23 to 25

In a covalent single bond between unlike atoms, the electron pair forming the σ bond is never shared absolutely equally between the two atoms; it tends to be attracted a little more towards the more electronegative atom of the two. This is generally represented as

If the carbon atom bonded to chlorine is itself attached to further carbon atoms, the effect can be transmitted further as

The effect of C_{1} on C_{2} is less than the effect of C_{2} on C_{3}; however, the transmission quickly dies away in a saturated chain, usually being too small to be noticeable beyond C_{2}. These influences on the electron distribution in σ bonds are known as inductive effects. Electron releasing groups w.r.t. the hydrogen atom are known to have +l effect and electron withdrawing groups are known to have -l effect. Electron donating group increases the stability of carbocation and withdrawing group increases the stability of carbanion.
23. Which of the following carbocation is expected to be most stable?
(A)

(B)

(C)

(D)

24. Correct order of the stability of the given carbanion is
(i)

(ii)

(iii)

(iv)

(A) i $>$ ii $>$ iii $>$ iv
(B) ii $>$ i $>$ iii $>$ iv
(C) iv $>$ iii $>$ ii $>$ i
(D) iv $>$ iii $>$ i $>$ ii
25. Most acidic compound in aqueous medium is
(A)

(B)

(C)

(D)

This part contains TWO (02) comprehensions. Based on each comprehension, there are TWO (02) questions of Multiple Choice Guestions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for G. No. 26 to 27

Benzoic acid is more acidic than acetic acid. Acidity of formic acid is more than the benzoic acid. Among monosubstituted benzoic acid derivatives, the ortho derivative is most acidic due to ortho effect. Acidity of any acid can be explained by the stability of conjugate base of the acid.
26. Which conjugate base is most stable?
(A)

(B)

(C)

(D)

27. Arrange acidity of the given compounds increasing order
(i) p-nitrophenol (ii) p-fluorophenol (iii) p-chlorophenol
(A) (i), (ii), (iii)
(B) (ii), (i), (iii)
(C) (ii), (iii), (i)
(D) (iii), (ii), (i)

Comprehension-2 for B. No. 28 to 29

Different spatial arrangements of the atom that result from restricted rotation about a single bond are conformers. The general stability order of these conformer are as follows.
Anti > Gauche > Partially eclipsed > Fully eclipsed
Although anti is more stable than gauche but, in some cases, gauche is more stable than anti.
28. Which one of the following is the most stable conformer?
(A)

(B)

(C)

(D)

29. Number of possible stable conformers of butane is
(A) 2
(B) 4
(C) 6
(D) Infinite

DRONACHARYA-2024-SAMPLE PAPER-C-XI-(Paper-3)-PCM

MATHEMATICS - (PART - F)

This part contains ONE (O1) comprehension. Based on comprehension, there are THRES (03) questions of Multiple Choice Guestions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for G. No. 30 to 32

If the locus of the circumcenter of a variable triangle having sides y axis, $y=2$, and $l x+m y=1$, where $(1, m)$ lies on parabola $y^{2}=4 x$ is curve C, then
30. The length of smallest focal chord of curve C is
(A) $\frac{1}{4}$
(B) $\frac{1}{12}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$
31. The curve C is symmetric about the line
(A) $x=\frac{3}{2}$
(B) $y=-\frac{3}{2}$
(C) $x=-\frac{3}{2}$
(D) $y=\frac{3}{2}$
32. If $A(\alpha, \beta)$ is the vertex of curve c. Then $\alpha+\beta$ is equal to
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) $-\frac{5}{4}$
(D) $\frac{5}{4}$

This part contains TWO (02) comprehensions. Based on each comprehension, there are TWO (02) questions of Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Comprehension-1 for Q. No. 33 to 34

If $a, b, c \in R$, satisfy the relation $a^{2}=b^{2}+c^{2}-2 a+6 b-4 c+14=0$.
33. The number of integers in the range of $f(x)=2 c \sin (x)-b \cos (x)$, are
(A) 10
(B) 11
(C) 12
(D) 13
34. The minimum value of $g(x)=a \cos ^{2}(x)-b \sec ^{2}(x)+2 c$, is
(A) $4+2 \sqrt{ } 3$
(B) $4-2 \sqrt{ } 3$
(C) 6
(D) 8

Comprehension-2 for ©. No. 35 to 36

Let the tangent at a point P on the hyperbola H , latus rectum at foci S and one of the asymptote is concurrent at a point ' A ' such that $\frac{C A}{C B}=\frac{9}{4}$, where C is center of H and B is point of intersection of tangent at P to the other asymptote. Answer the following question.
35. Let $\mathrm{H}: \mathrm{ax}^{2}+2 \mathrm{~h} x \mathrm{y}+\mathrm{by}{ }^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ and length of transverse axis is 4 unit, then
(A) eccentricity of H is $\frac{9}{4}$
(B) eccentricity of H is $\frac{3}{2}$
(C) Radius of director circle is $2 \sqrt{2}$
(D) Radius of director circle 4
36. Let $\mathrm{H}:(\mathrm{x}-1)^{2}-4(\mathrm{y}-2)^{2}=4$ the slope of SP can be
(A) $\frac{3}{2}$
(B) $\frac{1}{2}$
(C) -2
(D) 2

DRONACHARYA
 360° DIAGNOSTIC \& SCHOLARSHIP EXAM

Sample Paper

for Students presently in Class XI

Paper 3 JEE Advanced ANSWER KEY

