FILTJEE Big Bang Edge Test - 2022 for students presently in Class 11 (going to 12) (Paper 2)

Time: 3 Hours (2:00 pm – 5:00 pm)

CODE: 1112-2

Maximum Marks: 243

Instructions:

Caution: Class, Paper, Code as given above MUST be correctly marked on the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

1. You are advised to devote 45 Minutes on Section-I and 135 Minutes on Section-II.

Section	Subject		Question no	Marking Scheme for each question		
Section			Question no.	Correct answer	Wrong answer	
	PHYSICS	(PART-A)	1 to 7	+3	–1	
SECTION - I	CHEMISTRY	(PART-B)	8 to 14	+3	–1	
	MATHEMATICS	(PART-C)	15 to 21	+3	–1	
	PHYSICS	(PART-A)	22 to 35	+3	-1	
	CHEMISTRY	(PART-B)	36 to 49	+3	–1	
SECTION - II	MATHEMATICS	(PART-C)	50 to 63	[*] +3	-1	
SECTION - II	PHYSICS	(PART-D)	64 to 69	+3	0	
	CHEMISTRY	(PART-E)	70 to 75	+3	0	
	MATHEMATICS	(PART-F)	76 to 81	+3	0	

2. This Question paper consists of 2 sections. Marking scheme is given in table below:

- 3. Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- 4. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
- 5. Before attempting paper write your OMR Answer Sheet No., Registration Number, Name and Test Centre in the space provided below.
- 6. See method of marking of bubbles at the back of cover page for question no. 64 to 81.

Note: Please check this Question Paper contains all 81 questions in serial order. If not so, exchange for the correct Question Paper.

OMR Answer Sheet No	>::
Registration Number	:
Name of the Candidate	•:
Test Centre	:

For questions 64 to 81
Numerical based questions single digit answer 0 to 9
Example 1:
If answer is 6.
Correct method:
0123450789
Example 2:
If answer is 2.
Correct method:
01

300

 $\mathbf{A}a_0$

m

L

Recommended Time: 45 Minutes for Section – I

Section – I

PHYSICS - (PART - A)

This part contains **7** *Multiple Choice Questions* number **1** to **7**. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

A swimmer wishes to reach directly opposite point on the other bank of a river, flowing with velocity 8 m/s. The swimmer can swim 10 m/s in still water. The width of the river is 480 m. Time taken by him to do so

 (A) 60 sec
 (B) 48 sec
 (C) 80 sec
 (D) 100 sec

(D) $\mu [mg + \frac{\sqrt{3}}{2}F)$

- 2. A mass m rests on a horizontal surface in equilibrium. The coefficient of friction between the mass and the surface is μ . A force F is acting on the body as shown in the figure. The force of friction on mass m is
 - (A) μ mg

(C)
$$\mu$$
 [mg - $\frac{\sqrt{3}}{2}$ F

3. A particle slides down a smooth inclined plane of elevation α fixed in the elevator going up with an acceleration a_0 as shown in figure. The base of the incline has a length L. The time taken by the particle to reach the bottom is

(C) $\cos^{-1}(4/3)$

4. If W_1, W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m. Find the correct relation between W_1, W_2 and W_3 : (A) $W_1 > W_2 > W_3$ (B) $W_1 = W_2 = W_3$ (D) $W_2 > W_1 > W_3$ (C) $W_1 < W_2 < W_3$ 5. A block is at rest on a rough inclined surface inclined at an angle θ with the horizontal. The coefficient of static friction between the block and the inclined surface is μ . Then we can conclude that (A) frictional force = $mgsin\theta$ (B) $\mu = \tan \theta$ (C) $\mu \leq \tan \theta$ (D) None of these If vectors \vec{A} and \vec{B} are perpendicular to each other, then which of the following statements is 6. valid? (B) $\vec{A} \times \vec{B} = 0$ (A) $\vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}$ (D) \vec{A} . $\vec{B} = |\vec{A}| |\vec{B}|$ (C) $\vec{A} \cdot \vec{B} = 0$ A ball is projected at such an angle that the horizontal range is three times the maximum height 7. the angle of projection of the ball is, (B) $\sin^{-1}(4/3)$ (A) $\sin^{-1}(3/4)$

Space for Rough Work

(D) tan⁻¹(4/3)

CHEMISTRY - (PART - B)

This part contains **7** Multiple Choice Questions number **8** to **14**. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

8.	From 490 mg of H_2SO_4 , 10 ²⁰ molecules are removed. The number of molecules left over are:				
	(A) 6.02×10^{21}	(B) 4.9×10 ²¹			
	(C) 3.01×10^{21}	(D) 2.91×10 ²¹			
9.	A 0.60 g sample consisting of only CaC_2O_4 and salts to $CaCO_3$ and $MgCO_3$. The sample then w 900°C, where the products are CaO and MgO, w (A) 0.12g (C) 0.252g	d MgC ₂ O ₄ is heated at 500°C, converting the two veighed 0.465g. If the sample had been heated to what would the mixtures of oxides have weighted? (B) $0.21g$ (D) $0.3g$			
10.	If an electron, a proton and an α -particle have s are related to one another as: (A) electron > proton > α -particle	same de Broglie wavelenths, their kinetic energies (B) proton > electron > α -particle			
	(C) α -particle > proton > electron	(D) electron = proton = α -particle			
11.	Lattice energy of $CaCl_2$ is U and that of NaCl is radii of Ca^{2+} and Na^+ : (A) U = U' (C) U < U'	U'. For same crystal structure and same ionic (B) U > U' (D) cannot be decided			
12.	Which is the correct order w.r.t. ionisation energ (A) Be <c<n<o<b (C) B<be<c<o<n< td=""><td>ies of Be, B, C, N and O? (B) B<n<c<o<be (D) O<n<c<b<be< td=""></n<c<b<be<></n<c<o<be </td></be<c<o<n<></c<n<o<b 	ies of Be, B, C, N and O? (B) B <n<c<o<be (D) O<n<c<b<be< td=""></n<c<b<be<></n<c<o<be 			
13.	Which of the following has two nodal planes?				
	(A) σ_{ns}^{\star}	(B) $\sigma_{np_z}^*$			
	(C) $\pi^*_{2p_x}$	(D) π_{2p_x}			
14.	Which are the pair of functional isomers?(A) Methanol and methoxy methane(C) Acetone and acetaldehyde	(B) Ethyl alcohol and diethyl ether(D) Propionic acid and methyl acetate			
	Space for Rou	gh Work			

MATHEMATICS – (PART – C)

This part contains **7** *Multiple Choice Questions* number **15 to 21**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

- 15. If $(\log_e 2)(\log_b 625) = (\log_{10} 16)(\log_e 10)$ then the value of b is (A) 2 (B) 4 (C) 5 (D) none of these
- 16. If $R = \{(x, y) | x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in Z, then domain of R is (Z is set of all integer) (A) $\{0, 1, 2\}$ (B) $\{0, -1, -2\}$ (C) $\{-2, -1, 0, 1, 2\}$ (D) None of these
- 17. $\lim_{x \to 4} \frac{3 \sqrt{5 + x}}{x 4}$ is equal to (A) 1/6 (B) -1/6
- 18. Two finite sets have m and n elements. The number of subsets of the set having m element is 112 more than that of subsets of set having n elements. The values of m and n are, respectively. (A) 4, 7 (B) 7, 4 (C) 4, 4 (D) 7, 7

(C) 0

(D) 1

- 19. If $x^3+ax+1=0$ and $x^4 + ax^2 + 1 = 0$ have a common root, then complete set of values of a is (A) $(-\infty, -2)$ (B) $\{-2\}$ (C) $(-2, \infty)$ (D) none of these
- 20. The number of values of m for which the point of intersection of the lines 3x + 4y = 11 and y = mx + 1 will have integral coordinates is (A) 0 (B) 1 (C) 2 (D) 3
- 21. If A = {1, 3, 5, 7, 9, 11, 13, 15, 17}, B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then $(A' \cup (A \cup B) \cap B')$ (A) ϕ (B) N (C) A (D) B

Recommended Time: 135 Minutes for Section – II

Section – II

PHYSICS - (PART - A)

This part contains **14** Multiple Choice Questions number **22** to **35**. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

26. A car accelerates from rest to a speed of 10 m/s. Let the energy spent be E. If we accelerate the car from 10 m/s to 20 m/s, then the energy spent will be

A) E			
C) 3E			

(B) 2E (D) 4E

- 32. A car accelerates from rest at a constant rate of 2 m/s² for some time. Then, its retards at a constant rate of 4 m/s² and comes to rest. What is the maximum speed attained by the car if it remains in motion for 3 seconds?
 (A) 2 m/s
 (B) 3 m/s
 (C) 4 m/s
 (D) 6 m/s
- 33. A stone is projected at time t = 0 with a speed v_0 at an angle θ with the horizontal in a uniform gravitational field. The rate of work done (P) by the gravitational force plotted against time (t) will be as

34. A projectile is projected at an angle α (>45°) with an initial velocity u. The time t, at which its horizontal velocity will equal the vertical velocity, is

CHEMISTRY - (PART - B)

This part contains **14 Multiple Choice Questions** number **36 to 49.** Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

36.	Mixture of one mole each of ethyne and propyr vol. of H_2 gas produced will be? (A) 22.4 L (C) 33.6 L	ne on reaction with Na will form H ₂ gas at S.T.P. (B) 11.2 L (D) 44.8 L			
37.	1.0g of a sample of brass, on reacting with exce The percentage of Zn in the sample of brass is:(A) 32%(C) 38%	ss of HCl produces 120 mL of H ₂ gas at STP. (B) 35% (D) 40%			
38.	125 ml of 63% (w/v) $H_2C_2O_4.2H_2O$ is made to re The resulting solution is (A) neutral (C) strongly acidic	eact with 125 mL of a 40% (w/v) NaOH solution. (B) acidic (D) alakline			
39.	 An object absorbs energy corresponding to radiations. The wavelength of one radiation is radiation? (A) 2000 Å (C) 4000 Å 	wavelength 2400Å and emits two different 6000Å. What is the wavelength of the other (B) 3600Å (D) 5000Å			
40.	If H-atom is supplied with 12.1 eV energy and e then number of spectral line in Balmer series we 13.6 eV) (A) 1 (C) 3	lectron returns to the ground state after excitation ould be: (use energy of ground state of H-atom = (B) 2 (D) 4			
41.	The ions O^{2-} , F^- , Na^+ , Mg^{2+} , Al^{3+} are isoelectron (A) A significant decrease from O^{2-} to Al^{3+} (B) an increase from O^{2-} to F^- and then decreas (C) a decrease from O^{2-} to F^- and then increase (D) a significant increase from O^{2-} to Al^{3+}	ic. Their ionic radii show: ase from Na ⁺ to Al ³⁺ se from Na ⁺ to Al ³⁺			
Space for Rough Work					

42. The energy required to ionise 0.7mg of Li will be (IE of Li = 520 kJ mol⁻¹ and At. Wt. = 7):
 (A) 52.0 J
 (B) 520 J
 (C) 52 kJ
 (D) 5.2 J

- 43. Which of the following is expected to have highest hydration energy?
 - (A) Li⁺ (B) Be²⁺
 - (C) H⁺ (D) All have same value

44. Which of the following order is correct w.r.t. the radius?

(A) O²⁻ > F⁻ > Na⁺ > Mg²⁺
(B) Mg²⁺ > Na⁺ > F⁻ > O²⁻
(C) F⁻ > O²⁻ > Mg²⁺ > Na⁺
(D) Na⁺ > Mg²⁺ > O²⁻ > F⁻

45. On the basis of MOT which is correct?

- (A) The bond order for C₂ molecule is two and both bonds are □-bonds
 (B) The bond order for C₂ molecule is two with one σ bond and one □-bond
 (C) The HOMO in this molecule are □ type of antibonding m.o. containing total 3 electrons
 (D) None of the above is correct

 46. In which one of the following molecules the central atom said to adopt sp² hybridization?

 (A) BeF₂
 (B) BF₃
 (C) C₂H₂
- 47. Which of the following compounds is optically active?
 (A) CH₃CH₂COOH
 (B) CH₃CHOHCOOH
 (C) HOOC.CH₂.COOH
 (D) CH₃.CO.COOH
- 48. Arrange the carbanions, $(CH_3)_3\overline{C},\overline{C}CI_3,(CH_3)_2\overline{C}H,C_6H_5\overline{C}H_2$ in order of their decreasing stability: (A) $(CH_3)_2\overline{C}H > \overline{C}CI_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$ (C) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > C_6H_5\overline{C}H_2 > \overline{C}CI_3$

(B) $\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$ (D) $C_6H_5\overline{C}H_2 > \overline{C}Cl_3 > (CH_3)_3\overline{C} > (CH_3)_2\overline{C}H_3$

49. Which of the following groups represents the saline hydrides?
(A) NaH,KaH,CaH₂
(B) NaH,SiH₄,CaH₂
(C) NH₃,BH₃,AlH₃
(D) None of these

MATHEMATICS - (PART - C)

This part contains **14 Multiple Choice Questions** number **50 to 63.** Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

	If x_1, x_2, x_3 are in A.P. and y_1, y_2, y_3 are also in A.P., then the points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ are						
(A) collinear (C) form a Δ with Are	a 2 sq. units	(B) form a Δ with Area (D) None of these	a 1 sq. units				
If A and B are two sets defined as							
$A = \left\{ \left(x, y \right) \mid y = \frac{1}{x}; \ x \in R - \left\{ 0 \right\} \right\}$							
$B = \left\{ \left(x, y \right) \mid x + y = 0, \right.$	$x \in R$, then						
(A) $A \cap B = \phi$	(B) $A \cap B = A$	(C) $A \cap B = B$	(D) $A \cup B = A$				
Number of values of 6 (A) 0	in [0, 2π] that satisfy sine (B) 1	$\theta + \cos\theta = 1$ (C) 2	(D) More than 2				
If α and β are roots of	$x^2 - 7x + 1 = 0$ and $T_n =$	$\alpha^{n} + \beta^{n}$. Find $\frac{T_{2021} + T_{201}}{T_{2020}}$	<u>9</u> ?				
(A) $\frac{1}{7}$	(B) 1	(C) 2021	(D) 7				
Find distance between	lines $3x + 4y + 7 = 0$ and	d 6x + 8y + 11 = 0 ?					
(A) $\frac{3}{10}$	(B) $\frac{13}{10}$	(C) $\frac{7}{10}$	(D) <u>11</u> 10				
If $\lim_{x\to\infty}\left(\frac{x^2+1}{x+1}-ax-b\right)$	$= 4$, Find $a^2 + b^2$?						
(A) 25	(B) 27	(C) 26	(D) 17				
The number of elemer	its in set {(a, b): 2a ² + 3b ²	2 = 35, a, b \in z}, where z	is set of all integers is				
(A) 6	(B) 8	(C) 10	(D) 12				
Find value of $\lim_{n \to \infty} \frac{1^3 + 1^3}{n}$	$\frac{2^3+3^3++n^3}{n^4+2}$						
(A) 4	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$				
Space for Rough Work							
	(A) collinear (C) form a Δ with Are If A and B are two sets $A = \{(x, y) y = \frac{1}{x}; x \in$ $B = \{(x, y) x + y = 0,$ (A) $A \cap B = \phi$ Number of values of θ (A) 0 If α and β are roots of (A) $\frac{1}{7}$ Find distance between (A) $\frac{3}{10}$ If $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b\right)$ (A) 25 The number of element (A) 6 Find value of $\lim_{n \to \infty} \frac{1^3 + x^2}{x + 1}$ (A) 4	(A) collinear (C) form a Δ with Area 2 sq. units If A and B are two sets defined as $A = \left\{ (x, y) \mid y = \frac{1}{x}; x \in R - \{0\} \right\}$ $B = \left\{ (x, y) \mid x + y = 0, x \in R \right\}$, then (A) $A \cap B = \phi$ (B) $A \cap B = A$ Number of values of θ in $[0, 2\pi]$ that satisfy sime (A) 0 (B) 1 If α and β are roots of $x^2 - 7x + 1 = 0$ and $T_n =$ (A) $\frac{1}{7}$ (B) 1 Find distance between lines $3x + 4y + 7 = 0$ and (A) $\frac{3}{10}$ (B) $\frac{13}{10}$ If $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 4$, Find $a^2 + b^2$? (A) 25 (B) 27 The number of elements in set {(a, b): $2a^2 + 3b^2$ (A) 6 (B) 8 Find value of $\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4 + 2}$ (A) 4 (B) 2 <i>Space for Rou</i>	(A) collinear (B) form a Δ with Area 2 sq. units (C) form a Δ with Area 2 sq. units (D) None of these (D) None of these (C) 2 (A) $\frac{1}{7}$ (A) $\frac{1}{7}$ (B) 1 (C) $\frac{7}{10}$ (C) 26 The number of elements in set {(a, b): $2a^2 + 3b^2 = 35$, a, b $\in z$ }, where z (A) 6 (B) 2 (C) 10 Find value of $\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + + n^3}{n^4 + 2}$ (A) 4 (B) 2 (C) $\frac{1}{2}$ (D) $\frac{1}{2}$				

64.

65.

66.

67.

PHYSICS – (PART – D)

This part contains 6 Numerical Based Questions number 64 to 69. Each question has Single Digit Answer 0 to 9.

68. A ball of mass 0.5 kg is dropped from a tower the power of gravitational force at t = 2s, is 100α Watt.

(take g = 10 m/s²). Find the value of α .

69 Two blocks A and B each of mass m are placed on a smooth horizontal surface. Two horizontal force F and 2F are applied on both the blocks A and B, respectively, as shown in the figure. If the block A does not slide on block B, then the normal reaction acting between the two blocks is found to be $n \times F$. Then n is

CHEMISTRY - (PART - E)

This part contains 6 Numerical Based Questions number 70 to 75. Each question has Single Digit Answer 0 to 9.

- 70. Total number of H-bonding sites available in H_2O are.....
- 71. How many of the following radius orders are incorrect? (i) $N^{3-} > P^{3-}$ (ii) $O^{2-} > F^-$ (iii) $Ca^{2+} > Sr^{2+}$ (iv) $S^- > S^{2-}$
 - (v) $S^{2-} > O^{-}$
- 72. Number of electrons with m = 0 value in phosphorous atom are
- 73. The atomic masses of He and Ne are 4 and 20 amu respectively. The value of the de Broglie wavelength of He gas at -73°C is 'M' times that of the de Broglie wavelength of Ne at 727°C. M is:
- 74. How many moles of KMnO₄ are required in acidic medium to oxidise 10 mole of Sn^{2+} to Sn^{4+} ?
- 75. The velocity of an electron in a certain Bohr orbit of H-atom bears the ratio 1 : 275 to the velocity of light. The shell number is :

MATHEMATICS – (PART – F)

This part contains 6 Numerical Based Questions number 76 to 81. Each question has Single Digit Answer 0 to 9.

76. Find the value of $\frac{\tan 70^\circ - \tan 20^\circ}{\tan 50^\circ}$

77. Find the exact value of the expression $\frac{\sin^2 34^\circ - \sin^2 11^\circ}{\sin 34^\circ \cos 34^\circ - \sin 11^\circ \cos 11^\circ}.$

- 78. If $\sum_{r=1}^{88} \tan r^0 \tan (r+1)^0 = \cot^2 1^0 k$, where k is a prime number, then find the absolute difference of the digits in k.
- 79. If value of limit $\lim_{x\to\infty} (\sqrt{x^2 + x + 1} \sqrt{x^2 + 1})$ is k, find 4k
- 80. If α , β , γ are roots of $x^3 2x^2 x + 3 = 0$, then value of $\frac{(\alpha^3 + \alpha^2 + 3)(\beta^3 + \beta^2 + 3)(\gamma^3 + \gamma^2 + 3)}{\alpha\beta\gamma}$ is
- 81. Find the value of $\frac{\log_5 9.\log_7 5.\log_3 7}{\log_2 \sqrt{6}} + \frac{1}{\log_9 \sqrt{6}}$

FIITJEE Big Bang Edge Test - 2022 for students presently in Class 11 (going to 12) (Paper 2) SAMPLE PAPER ANSWER KEY

1.	С	2.	В	3.	Α	4.	в
5.	Α	6.	С	7.	D	8.	D
9.	С	10.	Α	11.	в	12.	C
13.	С	14.	D	15.	С	16.	C
17.	В	18.	В	19.	В	20.	C
21.	В	22.	С	23.	C	24.	Α
25.	В	26.	С	27.	В	28.	D
29.	Α	30.	C	31.	C	32.	С
33.	D	34.	с	35.	D	36.	С
37.	В	38.	Α	39.	c	40.	Α
41.	Α	42.	Α	43.	C	44.	Α
45.	Α	46.	В	47.	В	48.	В
49.	Α	50.	Α	51.	D	52.	Α
53.	С	54.	Α	55.	Α	56.	Α
57.	A	58.	D	59.	D	60.	Α
61.	С	62.	В	63.	D	64.	1
65.	4	66.	2	67.	1	68.	1
69.	3	70.	4	71.	3	72.	9
73.	5	74.	4	75.	2	76.	2
77.	1	78.	1	79.	2	80.	5

81.