FIIT EE SAMPLE PAPER - 2018
 (Big Bang Edge Test / Talent Recognition Exam)

 for students presently in
Class 11 (Paper 2)

Time: 3 Hours (1:45 pm - 4:45 pm)

Instructions:

Caution: Class, Paper, Code as given above MUST be correctly marked on the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

1. You are advised to devote 45 Minutes on Section-I and 135 Minutes on Section-II.
2. This Question paper consists of $\mathbf{2}$ sections. Marking scheme is given in table below:

Section	Subject		Question no.	Marking Scheme for each question		
			correct answer	wrong answer		
SECTION - I	PHYSICS	(PART-A)		1 to 9	+2	-0.5
	CHEMISTRY	(PART-B)	10 to 18	+2	-0.5	
	MATHEMATICS	(PART-C)	19 to 27	+2	-0.5	
SECTION - II	PHYSICS	(PART-A)	28 to 41	+3	-1	
	CHEMISTRY	(PART-B)	42 to 55	+3	-1	
	MATHEMATICS	(PART-C)	56 to 69	+3	-1	
	PHYSICS	(PART-D)	70 to 75	+3	0	
	CHEMISTRY	(PART-E)	76 to 81	+3	0	
	MATHEMATICS	(PART-F)	82 to 87	+3	0	

3. Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
4. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
5. Before attempting paper write your OMR Answer Sheet No., Registration Number, Name and Test Centre in the space provided at the bottom of this sheet.
6. See method of marking of bubbles at the back of cover page for question no. 70 to 87.

Note: Please check this Question Paper contains all 87 questions in serial order. If not so, exchange for the correct Question Paper.

OMR Answer Sheet No. :	
Registration Number	$:$
Name of the Candidate	$:$
Test Centre	$:$

For questions $\mathbf{7 0}$ to $\mathbf{8 7}$

Numerical based questions single digit answer 0 to 9

Example 1:

If answer is 6 .
Correct method:
(0) (1)
)
(3) (4) (5)
(6) (7) (8)

Example 2:

If answer is 2.
Correct method:
(0) (1)
(2)
(3) (4)
(5)
(6) (7) (8) (9)

Recommended Time: 45 Minutes for Section - I

Section - I

PHYSICS - (PART - A)

This part contains 9 Multiple Choice guestions number 1 to 9. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. If μ is the coefficient of friction between each block and floor then find the minimum value of F to move the system
(A) $\mu m_{1} g$
(B) $\mu m_{2} g$
(C) $\mu\left(m_{1}+m_{2}\right) g$
(D) $\mu\left(m_{1}-m_{2}\right) g$

2. A body moves 4 m towards east then 3 m north. The displacement and distance covered by the body are
(A) $7 \mathrm{~m}, 6 \mathrm{~m}$
(B) $6 \mathrm{~m}, 5 \mathrm{~m}$
(C) $5 \mathrm{~m}, 7 \mathrm{~m}$
(D) $4 \mathrm{~m}, 3 \mathrm{~m}$
3. The dimensions of pressure gradient for a liquid in a cylinder is
(A) $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$.
(B) $\mathrm{ML}^{-2} \mathrm{~T}^{-1}$
(C) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
(D) $\mathrm{ML}^{-1} \mathrm{~T}^{2}$
4. \quad A body of mass m is suspended by two strings making angles α and β with the horizontal. Find the tension in the strings.
(A) $T_{1}=\frac{m g \cos \beta}{\sin (\alpha+\beta)}=T_{2}$
(B) $T_{1}=T_{2}=\frac{m g \sin \beta}{\sin (\alpha+\beta)}$

(C) $T_{1}=\frac{m g \cos \beta}{\sin (\alpha+\beta)}, T_{2}=\frac{m g \cos \alpha}{\sin (\alpha+\beta)}$
(D) none of these
5. Error in the measurement of radius of a sphere is 1%. Then the error in the measurement of volume is
(A) 1%
(B) 5%
(C) 3%
(D) 8%
6. The velocity of projection of an oblique projectile is: $\vec{v}=3 \hat{i}+2 \hat{j}$ (in m / s). The speed of the projectile at the highest point of the trajectory is,
(A) $3 \mathrm{~ms}^{-1}$
(B) $2 \mathrm{~ms}^{-1}$
(C) $1 \mathrm{~ms}^{-1}$
(D) zero
7. A body is acted upon by a force which is inversely proportional to the distance covered. The work done will be proportional to:
(A) s
(B) s^{2}
(C) \sqrt{s}
(D) None of the above
8. On a horizontal frictionless frozen lake, a girl (36 kg) and a box (9 kg) are connected to each other by means of a rope. Initially they are 20 m apart. The girl exerts a horizontal force on the box, pulling it towards her. How far has the girl travelled when she meets the box?
(A) 10 m
(B) Since there is not friction, the girl will not move
(C) 16 m
(D) 4 m
9. A 750 W motor drivers a pump which lifts 300 litres of water per minute to a height of 6 meters. The efficiency of the motor is nearly (take acceleration due to gravity to be $10 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 30%
(B) 40%
(C) 50%
(D) 20%

Space for Rough Work

CHEMISTRY - (PART - B)

This part contains 9 Multiple Choice Guestions number 10 to 18. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
10. How many maximum number of electrons of an atom will have the following set of quantum numbers?

$$
\mathrm{n}=4, \ell=0,1,2, \mathrm{~m}=0, \pm 1, \mathrm{~s}=+1 / 2
$$

(A) 18
(B) 7
(C) 14
(D) 9
11. What will be the molarity of 36.5 mass \% solution of HCl ? The density of the solution is $0.8 \mathrm{~g} / \mathrm{mL}$ at a certain temperature.
(A) 0.008 M
(B) 0.8 M
(C) 8 M
(D) 80 M
12. Atoms having which of the following outermost electronic configuration has the highest value of electron gain enthalpy or electron affinity?
(A) $n s^{2} n p^{3}$
(B) $n s^{2} n p^{2}$
(C) $(n+1) s^{2}(n+1) p^{3}$
(D) $n s^{2} n p^{1}$
13. The R.M.S velocity of a monoatomic gas was $\times \mathrm{m} / \mathrm{s}$ at T Kelvin. When the temperature is reduced to half of its original value, the atoms dimerise to molecules. What will be the new R.M.S velocity in m / s unit?
(A) $\frac{x}{4}$
(B) $\frac{x}{2}$
(C) $\frac{x}{\sqrt{2}}$
(D) $4 x$
14. In which of the following molecule the lone pair of the central atom is the most penetrated towards its nucleus or strongly attracted by the nucleus?
(A) NH_{3}
(B) PH_{3}
(C) AsH_{3}
(D) BiH_{3}
15. In which of the following option, the second ionization energy is given in the correct order.
(A) $\mathrm{B}>\mathrm{Be}$
(B) $\mathrm{N}>\mathrm{O}$
(C) $\mathrm{Mg}>\mathrm{Na}$
(D) $\mathrm{C}>\mathrm{O}$
16.

In the above arrangement the 5 L container contains He and the 20 L container contains CH_{4} at constant temperature. What will be the rate of effusion of He to CH_{4} through the two identical orifices?
(A) $2: 1$
(B) $4: 1$
(C) $1: 1$
(D) $1: 2$
17. Which of the following contains the strongest $B-F$ bond?
(A) BF_{3}
(B) BF_{4}^{-}
(C) HBF_{4}
(D) KBF_{4}
18. The orbital angular momentum vector of which electron of chromium, splits into five components if a magnetic field is applied?
(A) $11^{\text {th }}$ electron
(B) $21^{\text {st }}$ electron
(C) $18^{\text {th }}$ electron
(D) $10^{\text {th }}$ electron

Space for Rough Work

MATHEMATICS - (PART - C)

This part contains 9 Multiple Choice Questions number 19 to 27. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
19. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are, respectively
(A) 4,7
(B) 7,4
(C) 4,4
(D) 7,7
20. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$, then the equation with roots $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ is
(A) $3 x^{2}-25 x+3=0$
(B) $x^{2}+5 x-3=0$
(C) $x^{2}-5 x+3=0$
(D) $3 x^{2}-19 x+3=0$
21. $\sum_{r=2}^{43} \frac{1}{\log _{r} n}=$
(A) $\log _{n} 43$
(B) $\log _{43 n}$
(C) $\log _{43!} n$
(D) $\frac{1}{\log _{43!} n}$
22. If $x>1, y>1, z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these
23. If $\frac{\cos \theta}{p}=\frac{\sin \theta}{q}$, then $\frac{p}{\sec 2 \theta}+\frac{q}{\operatorname{cosec} 2 \theta}=$
(A) p
(B) q
(C) pq
(D) $\frac{p}{q}$
24. $\int\left(x+\frac{1}{x}\right)^{3 / 2}\left(\frac{x^{2}-1}{x^{2}}\right) d x$ is equal to
(A) $\frac{5}{2}\left(x+\frac{1}{x}\right)^{5 / 2}+c$
(B) $\frac{2}{5}\left(x+\frac{1}{x}\right)^{5 / 2}+c$
(C) $2\left(x+\frac{1}{x}\right)^{1 / 2}+c$
(D) none of these
25. If $<a_{n}>$ is an A.P. and $a_{1}+a_{4}+a_{7}+\ldots+a_{16}=147$, then $a_{1}+a_{6}+a_{11}+a_{16}=$
(A) 96
(B) 98
(C) 100
(D) none of these
26. The equation of the acute angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$ is
(A) $21 \mathrm{x}+77 \mathrm{y}-101=0$
(B) $11 x+3 y+20=0$
(C) $21 x-7 y+3=0$
(D) $11 x-3 y+9=0$
27. Orthocentre of triangle with vertices $(0,0),(3,4)$ and $(4,0)$ is
(A) $(3,5 / 4)$
(B) $(3,12)$
(C) $(3,3 / 4)$
(D) $(3,9)$

Recommended Time: 135 Minutes for Section - II

Section - II

PHYSICS - (PART - A)

This part contains 14 Multiple Choice Questions number 28 to 41. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
28. Two beads A and B of equal mass are connected by a light inextensible cord. They are constrained to move on a frictionless ring in vertical plane. The beads are released from rest as shown in figure. The tension in the cord just after the release is
(A) $\frac{\mathrm{mg}}{4}$
(B) $\sqrt{2} \mathrm{mg}$
(C) $\frac{\mathrm{mg}}{2}$
(D) $\frac{\mathrm{mg}}{\sqrt{2}}$

29. From a uniform disc of radius R an equilateral triangle of side $\sqrt{ } 3 R$ is removed as shown. Find out the centre of mass of the remaining figure.
(A) $(0,0)$
(B) $(0, R)$
(C) $(R, 0)$
(D) $\left(0, \frac{\sqrt{3}}{2 R}\right)$

30. The mass collide in air stick together. After how much time combined mass will fall to the ground (calculate the time from the starting when the motion was started)
(A) $(1+\sqrt{2}) \mathrm{s}$
(B) $2 \sqrt{2} s$
(C) $(2+\sqrt{2}) \mathrm{s}$
(D) none of these

31. If vectors P, Q and R have magnitude 5,12 and 13 units and $\vec{P}+\vec{Q}=\vec{R}$, the angle between Q and R is
(A) $\cos ^{-1} \frac{5}{12}$
(B) $\cos ^{-1} \frac{5}{13}$
(C) $\cos ^{-1} \frac{12}{13}$
(D) $\cos ^{-1} \frac{7}{13}$
32. A spring has a length I_{1} when tension in it is n_{1} (in N). It has a length I_{2} when tension is n_{2} (in N). Find its spring constant :
(A) $\frac{\left(n_{2} l_{2}-n_{1} l_{1}\right)}{\left(l_{1}-I_{2}\right)}$
(B) $\frac{\left(n_{1}-n_{2}\right)}{\left(l_{1}-I_{2}\right)}$
(C) $\frac{\left(n_{2}-n_{1}\right)}{\left(l_{1}-l_{2}\right)}$
(D) $\frac{\left(n_{1} l_{1}-n_{2} l_{2}\right)}{\left(l_{1}-I_{2}\right)}$
33. A person walking at the rate of $3 \mathrm{~km} /$ hour, the rain appears to fall vertically when he increase his to speed $6 \mathrm{~km} / \mathrm{hr}$ it appears to meet him at angle of 45° with vertical. The speed of rain is
(A) $3 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
(B) $\frac{3}{\sqrt{2}} \mathrm{~km} / \mathrm{hr}$
(C) $6 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
(D) $2 \sqrt{3} \mathrm{~km} / \mathrm{hr}$
34. Force acting on a particle moving in a straight line varies with the velocity of the particle as $F=\frac{K}{V}$. Here, K is a constant. The work done by this force in time t is:
(A) $\frac{K}{v^{2}} \cdot t$
(B) 2 Kt
(C) Kt
(D) $\frac{2 \mathrm{Kt}}{\mathrm{v}^{2}}$
35. Four identical particles are placed at the corners of a square of side ℓ. If at $t=0$ all the particles start moving simultaneously with speed v towards each other i.e. A towards B, B towards C and so on. Find the time after which they will combine together

(A) $\frac{\ell}{\mathrm{v}}$
(B) $\frac{\ell}{\sqrt{2} v}$
(C) $\frac{\sqrt{2} \ell}{v}$
(D) $\frac{2 \ell}{v}$
36. For what value of m (in kg), the pulley P_{1} remains at rest.
(A) 6
(B) 2
(C) 10.66
(D) 5.33

37. In the figure shown, block P and Q move towards left with velocity v_{1} and v_{2} along horizontal direction respectively, then the ratio of $\frac{v_{1}}{v_{2}}$ will be

(A) $\frac{\cos \theta_{1}}{\cos \theta_{2}}$
(B) $\frac{\cos \theta_{2}}{\cos \theta_{1}}$
(C) $\frac{\sin \theta_{2}}{\sin \theta_{1}}$
(D) $\frac{\sin \theta_{1}}{\sin \theta_{2}}$
38. If a particle moves in such a way that its position vector \vec{r} is given as $\vec{r}=5\left[\cos \left(5 t^{2}\right) \hat{i}+\sin \left(5 t^{2}\right) \hat{j}\right]$ then
(A) The magnitude of total acceleration is constant
(B) The speed is constant
(C) magnitude of tangential acceleration is constant
(D) The magnitude of tangential acceleration is zero
39. An object of mass 40 kg and having velocity $4 \mathrm{~m} / \mathrm{s}$ collides with another object of mass 60 kg , having velocity $2 \mathrm{~m} / \mathrm{s}$ in the same direction. The loss of energy when the collision is perfectly inelastic is
(A) 392 J
(B) 440 J
(C) 48 J
(D) 110 J
40. A particle of mass M is moving in a horizontal circle of radius R with uniform speed V. When it moves from one point to a diametrically opposite point its:
(A) momentum does not change
(B) momentum change by 2 MV
(C) KE changes by MV^{2}
(D) KE changes by $(1 / 4) \mathrm{MV}^{2}$
41. A particle is moving on an elliptical path as shown, speed of the particle is constant. Its acceleration is maximum at
(A) A
(B) B
(C) C
(D) same everywhere

CHEMISTRY - (PART - B)

This part contains 14 Multiple Choice Questions number 42 to 55. Each question has 4 choices $(A),(B),(C)$ and (D), out of which ONLY ONE is correct.
42. According to Bohr's theory, the radius of orbits of H or H -like species is expressed as

$$
\begin{aligned}
& r_{n} \alpha \frac{n^{2}}{Z} \\
& \text { or, } r_{n}=K \times \frac{n^{2}}{Z}
\end{aligned}
$$

The constant K is given as:
(A) $\frac{\mathrm{h}^{2}}{2 \pi^{2} \mathrm{me}^{4}}$
(B) $\frac{\mathrm{h}^{2}}{4 \pi^{2} \mathrm{me}^{2}}$
(C) $\frac{2 \pi^{2} m e^{4}}{h^{2}}$
(D) $\frac{4 \pi^{2} m e^{2}}{h^{2}}$

43. \quad| P | Q | R | S | T | U | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A part of a period of the periodic table is given above. It contains only successive representative elements which display regular variation in properties. Choose the correct statement.
(A) $\mathrm{R}^{-}, \mathrm{Q}, \mathrm{S}^{2+}$ and P^{+}are isoelectronic species
(B) The period can contain a maximum number of 18 elements
(C) The most electronegative element of the period is the smallest atom of the period
(D) The ionization energy of R is higher than that of U
44. Phosphorus undergoes $\mathrm{sp}^{3} \mathrm{~d}$ hybridization in a series of its compounds containing F and Cl atoms. Choose the correct statement.
(A) The dipole moment of $\mathrm{PF}_{2} \mathrm{Cl}_{3}$ is higher than that of $\mathrm{PF}_{3} \mathrm{Cl}_{2}$
(B) Phosphorus displays maximum electronegativity in $\mathrm{PF}_{2} \mathrm{Cl}_{3}$ as compared to other compounds like $\mathrm{PF}_{3} \mathrm{Cl}_{2}, \mathrm{PF}_{4} \mathrm{Cl}$ etc.
(C) The crystal structure of $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ contains $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PF}_{6}\right]^{-}$
(D) The bond angle $\angle \mathrm{CIPCl}$ in PFCl_{4} is 180°
45. What is the oxidation number of lithium in Li_{2} molecule?
(A) +1
(B) -1
(C) zero
(D) +1 or -1
46.

The largest bond angle observed in the above molecule is:
(A) $\angle \mathrm{FCCl}$
(B) $\angle \mathrm{ICBr}$
(C) $\angle \mathrm{CICBr}$
(D) $\angle \mathrm{ClCl}$
47. 0.98 g of a polybasic acid (mol.mass $=98$) requires 30 mL of $0.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ for complete neutralization. What is the basicity of the acid?
(A) 4
(B) 2
(C) 3
(D) 1
48. In which of the following reaction, the equivalent mass of MnO_{4}^{-}has the highest value?
(A) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(B) $8 \mathrm{MnO}_{4}^{-}+3 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 8 \mathrm{MnO}_{2}+6 \mathrm{SO}_{4}^{2-}+2 \mathrm{OH}^{-}$
(C) $2 \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{4}^{2-}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(D) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{3}^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{2-}+3 \mathrm{H}_{2} \mathrm{O}$
49. Which of the following molecule has the lowest value of 'a' (van der Waal's constant)?
(A) $\mathrm{C}_{2} \mathrm{H}_{4}$
(B) N_{2}
(C) CO
(D) $\mathrm{B}_{2} \mathrm{H}_{6}$ (At. wt. of $\mathrm{B}=11$)
50. In which state a chlorine atom contains five unpaired electrons?
(A) Ground state
(B) First excited state
(C) Second excited state
(D) Third excited state
51. According to de-Broglie law, the wavelength of a particle is equal to
(A) Ev
(B) $\frac{\mathrm{h}}{\mathrm{p}}$
(C) $\frac{m v^{2}}{r}$
(D) mc^{2}
52. Which of the following molecule has the highest lattice energy?
[Assume the coordination number and Mandelung constant for the compounds have same values]
(A) CaO
(B) MgO
(C) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) BaO
53. Under which of the following conditions, the density of an ideal gas has maximum value?
(A) 3 atm and 400 K
(B) 4 atm and 800 K
(C) 1 atm and 100 K
(D) 2 atm and 400 K
54. How many elements are present in the shortest period of the periodic table?
(A) 8
(B) 10
(C) 2
(D) 18
55. Which of the following concentration term does NOT depend on temperature?
(A) Molarity
(B) Molality
(C) Formality
(D) Normality

Space for Rough Work

MATHEMATICS - (PART - C)

This part contains 14 Multiple Choice Questions number 56 to 69. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
56. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
(A) lie on a straight line
(B) lie on an ellipse
(C) lie on a circle
(D) are vertices of a triangle
57. The diagonals of a parallelogram PQRS are along the lines $x+3 y=4$ and $6 x-2 y=7$. Then PQRS is
(A) rectangle
(B) parallelogram
(C) cyclic quadrilateral
(D) rhombus
58. For the equation $3 \mathrm{x}^{2}+\mathrm{px}+3=0$, if one root is square of the other root, then $\mathrm{p}=$
(A) $\frac{1}{3}$
(B) 1
(C) 6
(D) 3
59. If $X \cup\{1,2\}=\{1,2,3,5,9\}$, then
(A) the smallest set X is $\{3,5,9\}$
(B) the smallest set X is $\{2,3,5,9\}$
(C) the largest set X is $\{1,2,5,9\}$
(D) the largest set X is $\{2,3,4,9\}$
60. If $y=\frac{\sin x+\cos x}{\sin x-\cos x}$, then $\frac{d y}{d x}$ at $x=0$ is $(-n)$. Find n
(A) 2
(B) 3
(C) 4
(D) 5
61. $\sin ^{2} \frac{\pi}{8}+\sin ^{2} \frac{3 \pi}{8}+\sin ^{2} \frac{5 \pi}{8}+\sin ^{2} \frac{7 \pi}{8}$ is equal to
(A) 1
(B) -1
(C) 0
(D) 2
62. The distance between the lines $4 x+3 y=7$ and $8 x+6 y=15$ is
(A) $\frac{1}{10}$
(B) $\frac{8}{10}$
(C) 1
(D) none of these
63. If $\log _{4} 5=\mathrm{a}$ \& $\log _{5} 6=\mathrm{b}$, then $\log _{3} 2=$
(A) $\frac{1}{2 a+1}$
(B) $\frac{1}{2 b+1}$
(C) $2 a b+1$
(D) $\frac{1}{2 a b-1}$
64. The sum of the series $\frac{5}{13}+\frac{55}{13^{2}}+\frac{555}{13^{3}}+\ldots \ldots \infty$ is
(A) 50/27
(B) $13 / 36$
(C) $65 / 36$
(D) none of these
65. The value of $81^{\left(\frac{1}{\log _{5} 3}\right)}+27^{\log _{9} 36}+3^{\frac{4}{\log _{7} 9}}$ is equal to
(A) 49
(B) 625
(C) 216
(D) 890
66. If the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal, then a, b, c are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these
67. The sum of infinite series $1 / 1.4+1 / 4.7+1 / 7.10+$ \qquad is
(A) $1 / 3$
(B) 3
(C) $1 / 4$
(D) ∞
68. $\quad \sin 163^{\circ} \cos 347^{\circ}+\sin 73^{\circ} \sin 167^{\circ}=$
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) none of these
69. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
(A) $\frac{3}{2}$
(B) $\frac{2}{3}$
(C) 1
(D) -1

PHYSICS - (PART - D)

This part contains 6 Numerical Based Guestions number 70 to 75. Each question has Single Digit Answer 0 to 9.
70. The displacement x (in m) of particle of mass m (in kg) is related to time t (in second) by $x=t^{2}+3$. Find the work (in J) done in the first two seconds. (take $m=0.5 \mathrm{~kg}$)
71. Two particles of masses m_{1} and m_{2} connected by an inextensible massless string are kept on a fixed wedge. If $\mu_{1}=\frac{1}{2}, \mu_{2}=\frac{1}{3}, m_{1}=1 \mathrm{~kg}, \mathrm{~m}_{2}=2 \mathrm{~kg}$. Find the acceleration of the particles

72. A car driver applies the brakes which retards the car at a rate of $8 \mathrm{~m} / \mathrm{s}^{2}$. If the initial velocity of the car is $10 \mathrm{~m} / \mathrm{s}$, the speed of the car after 5 s will be
73. Coefficient of friction between 10 kg block and 20 kg is 0.4 . If the friction between them is 30 N . If the value of the force being applied on 10 kg , (the floor is smooth) is 9 K , then find the value of K .

74. The length of the component of $\vec{A}=3 \hat{i}+4 \hat{j}-\hat{k}$ along the direction of $\vec{B}=\hat{i}+\hat{j}+\hat{k}$ is given by $\sqrt{3} x$ then what is x ?
75. Two blocks of mass $\mathrm{m}=1 \mathrm{~kg}$ and $\mathrm{M}=2 \mathrm{~kg}$ are in contact on a frictionless table. A horizontal force $F(=3 N)$ is applied to m . The force (In N) of contact between the blocks will be

CHEMISTRY - (PART - E)

This part contains 6 Numerical Based Guestions number 76 to 81. Each question has Single Digit Answer 0 to 9.
76. How many vacant atomic orbtial(s) is/are present in the outermost orbit of Na atom?
77.

If the ratio of the percentage of s-orbital character to the percentage of p-orbital character in a P P bond in the above figure, is expressed as $x: y$, the value of $(x+y)$ will be
78. How many moles of electron(s) is/are present in 1.8 mL of water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{cc}$) ?
79. Element (X) is present in group-2 and element (Y) is present in group-15 of the periodic table. How many atoms will be present in the compound formed between X and Y ?
80. A mixture containing $4 \mathrm{~g} \mathrm{NaOH}, 10.6 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and 8.4 g NaHCO 3 required 100 mL of HCl solution for complete reaction in presence of phenolphthalein indicator. If the molarity of the HCl solution is $x M$, the value of x is
81. The sum of the number of unpaired electrons present in an oxygen atom and an oxygen molecule according to molecualr orbital theory is:

MATHEMATICS - (PART - F)

This part contains 6 Numerical Based Questions number 82 to 87. Each question has Single Digit Answer 0 to 9.
82. If $x^{2}+a x+2=0$ and $x^{2}+b x-2=0$ have a common root, then $\left(a^{2}-b^{2}\right)$ is
83. If $\frac{5+9+13+\ldots . \text { to } n \text { terms }}{7+9+11+\ldots \text { to }(n+1) \text { terms }}=\frac{17}{16}$, then n is
84. The circumradius of the triangle with vertices $(0,0),(3,-1)$ and $(-2,4)$ is \qquad .
85. The number of values of x such that $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P. is \qquad
86. The number of integral values of x satisfying $\frac{(x-2)(2 x-3)^{2}(x-6)^{3}}{(x+5)^{4}}<0$ is \qquad
87. Let a and b be constants and $f(x)=a \sin x+b x \cos x+3 x^{2}$. If $f(2)=15$, then $f(-2)$ is

Space for Rough Work

FIIT] EE SAMPLE PAPER - 2018

 (Big Bang Edge Test / Talent Recognition Exam) for students presently in
Class 11 (Paper 2) ANSWERS

1.	C	2.	C	3.	A	
5.	C	6.	A	7.	D	8.
9.	B	10.	B	11.	C	12.
13.	B	14.	D	15.	A	16.
17.	A	18.	B	19.	B	20.
21.	D	22.	C	23.	A	24.
25.	B	26.	D	27.	C	28.
29.	B	30.	D	31.	C	32.
33.	A	34.	C	35.	A	36.
37.	B	38.	C	39.	C	40.
41.	C	42	B	43.	C	44.
45.	C	46.	B	47.	C	48.
49.	B	50.	C	51.	B	52.
53.	C	54.	C	55.	B	56.
57.	D	58	D	59.	A	60.
61.	D	62.	A	63.	D	64.
65.	D	66.	C	67.	A	68.
69.	A	70.	4	71.	0	72.
73.	5	74.	2	75.	2	76.
77.	4	78.	1	79.	5	80.
81.	4	82.	8	83.	7	84.
85.	1	86.	3	87.	9	

