SOLUTIONS
 SECTION - I: CHEMISTRY

1.

2.

3.

4. $2.9=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{R} 769}$
$1.1=\log A-\frac{E a}{2.303 R 667}$
$\mathrm{Ea}=4.17 \times 10^{4} \mathrm{cal} \mathrm{mol}^{-1}$
5.

6. $\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{ICl}_{2}^{-}, \mathrm{I}_{3}^{-}, \mathrm{XeF}_{2}$
$\mathrm{BeCl}_{2} \longrightarrow \mathrm{sp} \longrightarrow$ linear
$\mathrm{N}_{3}^{-} \longrightarrow \mathrm{sp} \longrightarrow$ linear
$\mathrm{N}_{2} \mathrm{O} \longrightarrow \mathrm{sp} \longrightarrow$ linear
$\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2} \longrightarrow \mathrm{sp} \longrightarrow$ linear
$\mathrm{O}_{3} \longrightarrow \mathrm{sp}^{2} \longrightarrow$ bent
$\mathrm{SCl}_{2} \longrightarrow \mathrm{sp}^{3} \longrightarrow$ bent
$\mathrm{I}_{3}^{-} \longrightarrow \mathrm{sp}^{3} \mathrm{~d} \longrightarrow$ linear
$\mathrm{ICl}_{2}^{-} \longrightarrow \mathrm{sp}^{3} \mathrm{~d} \longrightarrow$ linear
$\mathrm{XeF}_{2} \longrightarrow \mathrm{sp}^{3} \mathrm{~d} \longrightarrow$ linear
So among the following only four (4) has linear shape and no d-orbital is involved in hybridization.
7. As covalent character increases then solubility decreases
8. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{~N}}{ }_{2} \stackrel{\ominus}{\mathrm{Cl}} \quad$ gives scarlet red coloured dye with β - naphthol.
14.

15.

(C)

(B)

SECTION - II: MATHEMATICS

PART - A

1. If a boy is selected then number of ways $={ }^{4} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{3}$

If a boy is not selected then number of ways $={ }^{6} \mathrm{C}_{4}$
Captain can be selected in ${ }^{4} \mathrm{C}_{1}$ ways
Required number of ways $={ }^{4} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{3} \cdot{ }^{4} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{4} \cdot{ }^{4} \mathrm{C}_{1}=380$
2. For max. or min. $f^{\prime}(x)=0$
$\Rightarrow x^{2}-8 x+(12+\alpha)=0$
for one maxima and minima
D >0
$\alpha<4$
3. $\quad(a+(b+c))^{n}=a^{n}+{ }^{n} C_{1} a^{n-1}(b+c)^{1}+{ }^{n} C_{2} a^{n-2}(b+c)^{2}+\cdots+{ }^{n} C_{n}(b+c)^{n}$.

Further expanding each term of R.H.S.,
First term on expansion gives one term.
Second term on expansion gives two terms.
Third term on expansion gives three terms and so on.
\Rightarrow Total no. of terms $=1+2+3+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}$.
4. The required numbers are $1,2,11,12,21,22, \ldots ., 12222222$.

Let us calculate how many numbers are these.
There are 2 one-digit such numbers. There are 2^{2} two-digit such numbers and so on.
There are 2^{8} eight-digit such numbers. All the digit numbers beginning with 1 and written by means of 1 and 2 are smaller than 2.10^{8}. Thus, there are 2^{8} such nine-digit numbers.
Hence the required number of numbers is
$2+2^{2}+2^{3}+\ldots .+2^{8}+2^{8}=\frac{2\left(2^{8}-1\right)}{2-1}+2^{8}=2^{9}-2+2^{8}=766$.
5. $\int \frac{d t}{t^{2}+2 x t+1}=\int \frac{d t}{(t+x)^{2}+1-x^{2}}=\int \frac{d t}{(t+x)^{2}-\left(x^{2}-1\right)} \quad\left(\right.$ since $\left.x^{2}>1\right)$
$=\frac{1}{2 \sqrt{x^{2}-1}} \log \left[\frac{t+x-\sqrt{x^{2}-1}}{t+x+\sqrt{x^{2}-1}}\right]+c$
6. The area bounded by the lines
$y=3-|x|,-3 \leq x \leq 3$ is shown in the fig.
Area $A(x)=2 x .(3-x)$
$\Rightarrow A^{\prime}(x)=2(3-x)-2 x$
$=6-4 x=0 \Rightarrow x=3 / 2$
\Rightarrow Maximum area of the rectangle occurs when $x=3 / 2$.
Maximum area $=2 \cdot \frac{3}{2}\left(3-\frac{3}{2}\right)=\frac{9}{2}$ sq. units.

7. Let $(8+3 \sqrt{7})^{20}=I+f$, where $\mathrm{f}=$ fractional part and $\mathrm{I}=$ integral part

Also let $(8-3 \sqrt{7})^{20}=g$ then $0<g<1$
Here $\mathrm{I}+\mathrm{f}+\mathrm{g}=(8+3 \sqrt{7})^{20}+(8-3 \sqrt{7})^{20}=2\left[8^{20}+{ }^{20} \mathrm{C}_{2} \cdot 8^{18} \cdot(3 \sqrt{7})^{2}+\ldots \ldots+{ }^{20} \mathrm{C}_{20}(3 \sqrt{7})^{20}\right]$
$\Rightarrow I+f+g=$ even integer
But $0<f+g<2$
So, $I+1=$ even Integer $(\because f+g=1)$
$\Rightarrow I=$ odd Integer
8. $\frac{9!\times 2}{(3!)^{3} \times 3!}=560$
9. $\quad \mathrm{F}(1 / \mathrm{x})=\int_{1}^{1 / \mathrm{x}} \frac{\ln \mathrm{t}}{1+\mathrm{t}+\mathrm{t}^{2}} \mathrm{dt}=\int_{1}^{\mathrm{x}} \frac{\ln (1 / \mathrm{u})}{1+\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{u}^{2}}}\left(-\frac{\mathrm{du}}{\mathrm{u}^{2}}\right) \quad\left(\mathrm{u}=\frac{1}{\mathrm{t}}\right)=\int_{1}^{\mathrm{x}} \frac{\ln \mathrm{u}}{\mathrm{u}^{2}+\mathrm{u}+1} \mathrm{du}=\mathrm{F}(\mathrm{x})$

So statement-1 is not true.
If $F(x)=\int_{1}^{x} \frac{\ln t}{t+1} d t$ then
$F(x)+F(1 / x)=\int_{1}^{x} \frac{\ln t}{t+1} d t+\int_{1}^{1 / x} \frac{\ln t}{t+1} d t=\int_{1}^{x} \frac{\ln t}{t+1} d t+\int_{1}^{x} \frac{\ln (1 / u)}{1+\frac{1}{u}}\left(-\frac{d u}{u^{2}}\right)$
$=\int_{1}^{x} \ln t\left(\frac{1}{t+1}+\frac{1}{t^{2}+t}\right) d t-\int_{1}^{x} \frac{\ln t}{t+1}\left(1+\frac{1}{t}\right) d t=\int_{1}^{x} \frac{\ln t}{t} d t=\frac{(\ln x)^{2}}{2}$
10. $f(x)= \begin{cases}\sqrt{x}\left(1+x \sin \frac{1}{x}\right), & x>0 \\ -\sqrt{-x}\left(1+x \sin \frac{1}{x}\right), & x<0 \\ 0 & x=0\end{cases}$
$\lim _{x \rightarrow 0^{-}} f(x)=0=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=0$
$R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{h}\left(1+h \sin \frac{1}{h}\right)-0}{h}$
$=\lim _{h \rightarrow 0}\left(\frac{1}{\sqrt{h}}+\sqrt{h} \sin \frac{1}{h}\right)$ does not exist
Similarly $\mathrm{Lf}^{\prime}(0)$ does not exists
$\therefore \mathrm{f}(\mathrm{x})$ is continuous but not differentiable at $\mathrm{x}=0$.
11. $f(x)= \begin{cases}x[x] ; & 0 \leq x<2 \\ (x-1)[x] ; & 2 \leq x \leq 3\end{cases}$
$f(x)=\left\{\begin{array}{lll}0 & ; & 0 \leq x<1 \\ x & ; & 1 \leq x<2 \\ 2(x-1) & ; & 2 \leq x<3 \\ 6 & ; & x=3\end{array}\right.$
$L f^{\prime}(1)=0$ and $R f^{\prime}(1)=1 \Rightarrow L f^{\prime}(1) \neq \operatorname{Rf}^{\prime}(1)$
$L f^{\prime}(2)=1$ and $R f^{\prime}(2)=2 \Rightarrow L f^{\prime}(2) \neq R f^{\prime}(2)$
Both $f^{\prime}(1)$ and $f^{\prime}(2)$ does not exist.
12. $L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$

$$
L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sinh -h-0}{-h}
$$

$$
=0
$$

13. If $f(x)$ touches x-axis at only one irrational point, then $f(x)=(x-\alpha)^{2} g(x)$, where α is irrational.
\Rightarrow coefficients of $f(x)$ can't be rational
\Rightarrow for $f(x)$ with rational coefficients, then point of touching is rational.
14. The point of touching has to be rational
\Rightarrow the two roots of $\mathrm{f}(\mathrm{x})=0$ are rational
\Rightarrow third root is also rational.
15. $f(x)=(x-\alpha)^{3}(x-\beta)^{3}$
$\Rightarrow f^{\prime}(x)=(x-\alpha)^{2}(x-\beta)^{2}(2 x-(\alpha+\beta))$
$\Rightarrow f^{\prime \prime}(x)$ has roots α, β and a root between $\left(\alpha, \frac{\alpha+\beta}{2}\right)$ and $\left(\frac{\alpha+\beta}{2}, \beta\right)$.

PART - B

1. (A) $\cos x+\sin ^{2} x$ has a local maximum at $x=\frac{\pi}{3}$ and $x=\frac{-\pi}{3}$ in the interval $(-\pi, \pi)$
(B) $\tan ^{-1}(\sin x-\cos x)$ is strictly increasing in $\left(-\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
(C) $x^{2}-5 x+6=\left(x-\frac{5}{2}\right)^{2}-\frac{1}{4} \geq-\frac{1}{4}$ for all x

$$
\begin{aligned}
& \therefore 2<\mathrm{x}<3
\end{aligned} \begin{aligned}
& \Rightarrow \frac{-1}{4} \leq \mathrm{x}^{2}-5 \mathrm{x}+6<0 \\
& \\
& \Rightarrow\left[\mathrm{x}^{2}-5 \mathrm{x}+6\right]=-1 \\
& \therefore \int_{2}^{3}\left[\mathrm{x}^{2}-5 \mathrm{x}+6\right] \mathrm{dx}=-1
\end{aligned}
$$

(D) 3 I $=\int_{-3}^{3} \frac{3}{3+f(x)} d x=\int_{-3}^{3} \frac{3}{3+f(-x)} d x=\int_{-3}^{3} \frac{3 f(x)}{3 f(x)+9} d x$

$$
=\int_{-3}^{3} \frac{f(x)}{3+f(x)} d x=\frac{1}{2} \int_{-3}^{3} 1 . d x=3
$$

$\therefore \mathrm{I}=1$
2. Given differential equation is $(x+y)^{2} \frac{d y}{d x}=a^{2}$

Put $\mathrm{x}+\mathrm{y}=\mathrm{t} \therefore 1+\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$, we get
$\Rightarrow \mathrm{t}^{2}\left(\frac{\mathrm{dt}}{\mathrm{dx}}-1\right)=\mathrm{a}^{2} \Rightarrow \frac{\mathrm{t}^{2} \mathrm{dt}}{\mathrm{dx}}=\mathrm{a}^{2}+\mathrm{t}^{2}$
$\Rightarrow \frac{\mathrm{t}^{2} \mathrm{dt}}{\mathrm{a}^{2}+\mathrm{t}^{2}}=\mathrm{dx}$

Integrating, $\int \frac{t^{2}}{a^{2}+t^{2}} d t=\int d x$
$\Rightarrow \int\left(1-\frac{a^{2}}{a^{2}-t^{2}}\right) d t=\int d x$
$\Rightarrow \mathrm{t}-\mathrm{a} \tan ^{-1} \frac{\mathrm{t}}{\mathrm{a}}=\mathrm{x}+\mathrm{c}$
$\Rightarrow x+y-a \tan ^{-1} \frac{x+y}{a}=x+c$
$\therefore \mathrm{y}=\mathrm{a} \tan ^{-1} \frac{\mathrm{x}+\mathrm{y}}{\mathrm{a}}+\mathrm{c}$ is the required solution.
$\therefore(\mathrm{A}) \rightarrow(\mathrm{s})$
(B) $\sec ^{2} y \tan x d y=-\sec ^{2} x \tan y d x$
$\Rightarrow \int \frac{\sec ^{2} y}{\tan y} d y+\int \frac{\sec ^{2} x}{\tan x} d x=0$
$\log \tan y+\log \tan x=\log c$
$\log \tan x \tan y=\log c$
Hence $\tan \mathrm{x} \tan \mathrm{x}=\mathrm{c}$ is the required solution
$\therefore(B) \rightarrow(r)$
(C) $\frac{d y}{d x}=e^{3 x} e^{4 y}$
$\Rightarrow e^{-4 y} d y=e^{3 x} d x+c$
$\Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+C$
Putting $x=0$, we have
$-\frac{1}{4}-\frac{1}{3}=C \Rightarrow C=-\frac{7}{12}$
Hence $\frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}-\frac{7}{12}$
$\Rightarrow 7=3 e^{-4 y}+4 e^{3 x}$
\therefore (C) \rightarrow (q)
(D) $\frac{1}{x^{5} y^{5}}=\frac{5}{2 x^{2}}+C$
$\therefore(D) \rightarrow(p)$

SECTION - III: PHYSICS

PART - A

1. Magnetic field at O is $\frac{\mu_{0} I}{4 \pi R}(-\vec{k})+\frac{\mu_{0} I}{4 R}(-\vec{i})+\frac{\mu_{0} I}{4 \pi R}(-\vec{i})$
2. The magnetic dipole moment of the current carrying coil is given by

$$
\begin{aligned}
\overrightarrow{\mathrm{m}} & =\text { NIAn } \\
& =100 \times 0.5 \times(0.08) \times 0.04 \hat{\imath}=16 \times 10^{-2} \mathrm{Am}^{2}(\hat{\imath})
\end{aligned}
$$

The torque acting on the coil is

$$
\begin{aligned}
& \vec{\tau}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{B}}=\mathrm{mB} \quad(\hat{\mathrm{i}} \times \hat{\mathrm{j}}) \\
& =16 \times 10^{-2} \times \frac{0.05}{\sqrt{2}} \hat{\mathrm{k}} \\
& =5.66 \times 10^{-3}(\mathrm{~N}-\mathrm{m}) \hat{\mathrm{k}} .
\end{aligned}
$$

3. Let δ_{1} and δ_{2} be the extensions of the two rods
$Y_{1}=\frac{F / A}{\delta_{1} / \ell}=\frac{F \ell}{A \delta_{1}}$
4. Consider a cylindrical element of radius ' r ' and length ' ℓ '. According to Gauss's Law

$$
\begin{aligned}
& \int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}} \\
& \mathrm{E}(2 \pi \mathrm{r} \ell)=\frac{\rho\left(\pi \mathrm{r}^{2} \ell\right)}{\varepsilon_{0}}
\end{aligned}
$$

$$
\mathrm{E}=\frac{\rho \mathrm{r}}{2 \varepsilon_{0}}
$$

5. Inside the cavity, $\mathrm{B}=0$

Outside the cylinder, $B=\frac{\mu_{0} l}{2 \pi r}$
In the shaded region
$B=\frac{\mu_{0} I}{2 \pi r\left(b^{2}-a^{2}\right)}\left(r-\frac{a^{2}}{r}\right)$

at $r=a, B=0$
at $r=b, B=\frac{\mu_{0} l}{2 \pi b}$
6. $2 T \sin \frac{d \theta}{2}=B i R d \theta$
$\mathrm{Td} \theta=\operatorname{BiRd} \theta \quad$ (for θ small)
$\mathrm{T}=\mathrm{BiR}=\frac{\mathrm{BiL}}{2 \pi}$

7. Statement 2 does not confirm first statement.
8. Total energy is always negative for such systems.
9. Angular momentum is conserved. So velocity is variable.
10. Apply $\vec{F}=q(\vec{V} \times \vec{B})$
11. -ve charge accumulates on face $A B C D$
12. Charge will drift due to magnetic force only.
13. Energy must be less than V_{0}
14. $[\alpha]=M L^{-2} \mathrm{~T}^{-2}$

Only (B) option has dimension of time
Alternatively
$\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+k x^{4}=k A^{4}$
$\left(\frac{d x}{d t}\right)^{2}=\frac{2 k}{m}\left(A^{4}-x^{4}\right)$
$4 \sqrt{\frac{m}{2 k}} \int_{0}^{A} \frac{d x}{\sqrt{A^{4}-x^{4}}}=\int d t=T$
$4 \sqrt{\frac{m}{2 k}} \frac{1}{\mathrm{~A}} \int_{0}^{1} \frac{\mathrm{du}}{\sqrt{1-\mathrm{u}^{4}}}=T$
Substitute $\mathrm{x}=\mathrm{Au}$
15. As potential energy is constant for $|x|>X_{0}$, the force on the particle is zero hence acceleration is zero.

PART - B

1. Uniform \vec{E} constant acceleration so straight line or parabola.

Uniform $\overrightarrow{\mathbf{B}}$ initial $\overrightarrow{\mathbf{v}}$ along $\overrightarrow{\mathbf{B}}$-straight line.
Uniform $\overrightarrow{\mathbf{B}}$ initial $\overrightarrow{\mathbf{v}} \perp \overrightarrow{\mathbf{B}}$-circle
Uniform $\overrightarrow{\mathbf{B}}$ initial $\overrightarrow{\mathbf{v}}<\overrightarrow{\mathbf{B}}$-uniform right circular cylindrical helix.
Uniform $\overrightarrow{\mathbf{B}}|\mid$ uniform $\overrightarrow{\mathbf{E}}$ initial velocity along $\overrightarrow{\mathbf{B}}$ or $\overrightarrow{\mathbf{E}}$-straight line.
Uniform $\overrightarrow{\mathbf{B}}$ || uniform $\overrightarrow{\mathbf{E}}$ initial velocity \perp to $\overrightarrow{\mathbf{B}}$ or $\overrightarrow{\mathbf{E}}$-non uniform line.
Uniform $\overrightarrow{\mathbf{B}} \perp$ uniform $\overrightarrow{\mathbf{E}} \quad q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}=-q \overrightarrow{\mathbf{E}}$ straight line.
2. At steady state capacitor behave like open circuit.

